Investigation of properties of mortar containing pyrogenic silica-added supplementary cementitious materials

Authors

  • Gökhan Görhan Afyon Kocatepe University, Engineering Faculty, Department of Civil Engineering, Afyonkarahisar (Turkey)
  • Ahmet Mücahit Bozkurt Afyon Kocatepe University, Engineering Faculty, Department of Civil Engineering, Afyonkarahisar (Turkey)

DOI:

https://doi.org/10.7764/RDLC.21.1.118

Keywords:

mortar, cure, pozzolan, supplementary cementitious materials, pyrogenic silica

Abstract

This study investigated the effect of supplementary cementitious materials (SCMs) with pozzolanic nature fly-ash (FA), silica fume (SF), and ground granulated blast furnace slag (GGBFS) on the properties of cement mortar with pyrogenic silica addition. First, standard reference (SR) samples were prepared using CEM I 42.5 R-type cement. Pyrogenic silica was added to cement (0.5% by weight) to prepare another group of reference (PR) mortar samples. Cement in PR mortars was replaced with FA, SF, and GGBFS up to 10, 20, and 30%. The mortar samples were placed in 40x40x160 mm metal molds using a vibrating table. The following day the samples were removed from the molds and water cured for 7, 28, and 90 days. The results showed that increases in curing times helped improve the mechanical properties of the mortars. Moreover, the physical properties of PR mortars were affected more positively than the SR mortars. SF-substituted mortars had highest compressive strength, followed by GGBFS- and FA- substituted mortars. In conclusion, pyrogenic silica contributed to some extent to early strength, followed by a decrease.

References

Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3), 327–363. https://doi.org/10.1016/j.pecs.2009.11.003

Aldea, C. M., Young, F., Wang, K., & Shah, S. P. (2000). Effects of curing conditions on properties of concrete using slag replacement. Cement and Concrete Research, 30(3), 465–472. https://doi.org/10.1016/S0008-8846(00)00200-3

Barthel, H., Rösch, L., & Weis, J. (1996). Fumed silica - production, properties, and applications. In Organosilicon Chemistry II: From Molecules to Materials (pp. 761–778). Weinheim, Germany: Wiley-VCH Verlag GmbH. https://doi.org/10.1002/9783527619894.ch91

Binici, H., Kaplan, H., Temiz, H., & Görür, E. B. (2008). Some durability properties of ground blast furnace slag and ground basaltic pumice concretes. Journal of Engineering Sciences, 14(3), 309–317. Retrieved from http://dergipark.gov.tr/download/article-file/190984

Bost, P., Regnier, M., & Horgnies, M. (2016). Comparison of the accelerating effect of various additions on the early hydration of Portland cement. Construction and Building Materials, 113, 290–296. https://doi.org/10.1016/j.conbuildmat.2016.03.052

Bu, Y., Hou, X., Wang, C., & Du, J. (2018). Effect of colloidal nanosilica on early-age compressive strength of oil well cement stone at low temperature. Construction and Building Materials, 171, 690–696. https://doi.org/10.1016/j.conbuildmat.2018.03.220

Cho, Y. K., Jung, S. H., & Choi, Y. C. (2019). Effects of chemical composition of fly ash on compressive strength of fly ash cement mortar. Construction and Building Materials, 204, 255–264. https://doi.org/10.1016/j.conbuildmat.2019.01.208

Damtoft, J. S., Lukasik, J., Herfort, D., Sorrentino, D., & Gartner, E. M. (2008). Sustainable development and climate change initiatives. Cement and Concrete Research, 38(2), 115–127. https://doi.org/10.1016/j.cemconres.2007.09.008

Deja, J., Uliasz-Bochenczyk, A., & Mokrzycki, E. (2010). CO2 emissions from Polish cement industry. International Journal of Greenhouse Gas Control, 4(4), 583–588. https://doi.org/10.1016/j.ijggc.2010.02.002

Díaz, J. E., Izquierdo, S. R., Mejía De Gutiérrez, R., & Gordillo, M. (2013). Ternary mixture of portland cement, blast furnace slag and limestone: mechanical strength and durability. Revista de La Construcción. Journal of Construction, 12(3), 55–62.

Dorum, A., Koçak, Y., Yılmaz, B., & Uçar, A. (2009). The effects of blast furnace slag on the cement surface properties and hydration. Journal of Science and Technology of Dumlupinar University, 19, 47–58.

Elmrabet, R., El Harfi, A., & El Youbi, M. S. (2019). Study of properties of fly ash cements. Materials Today: Proceedings, 13, 850–856. Elsevier Ltd. https://doi.org/10.1016/j.matpr.2019.04.048

Erdoğan, T. Y. (2003). Beton. Metu Press - TURKEY.

Gao, D., Meng, Y., Yang, L., Tang, J., & Lv, M. (2019). Effect of ground granulated blast furnace slag on the properties of calcium sulfoaluminate cement. Construction and Building Materials, 227, 116665. https://doi.org/10.1016/j.conbuildmat.2019.08.046

Giergiczny, Z. (2019). Fly ash and slag. Cement and Concrete Research, 124, 105826. https://doi.org/10.1016/j.cemconres.2019.105826

Givi, A. N., Rashid, S. A., Aziz, F. N. A., & Salleh, M. A. M. (2011). Investigations on the development of the permeability properties of binary blended concrete with nano-SiO2 particles. Journal of Composite Materials, 45(19), 1931–1938. https://doi.org/10.1177/0021998310389091

Gümüş, A. (2016). Effect of thermal curing process on geopolymer concrete properties. Afyon Kocatepe University, M.Sc. Thesis, Institute of Science and Technology, Department of Civil Engineering, Afyonkarahisar- TURKEY.

Ha, S. W., Weitzmann, M. N., & Beck, G. R. (2012). Dental and skeletal applications of silica-based nanomaterials. In Nanobiomaterials in Clinical Dentistry (pp. 69–91). Elsevier Inc. https://doi.org/10.1016/B978-1-4557-3127-5.00004-0

Hatungimana, D., Taşköprü, C., İçhedef, M., Saç, M. M., & Yazıcı, Ş. (2019). Compressive strength, water absorption, water sorptivity and surface radon exhalation rate of silica fume and fly ash based mortar. Journal of Building Engineering, 23, 369–376. https://doi.org/10.1016/j.jobe.2019.01.011

Kallel, T., Kallel, A., & Samet, B. (2016). Durability of mortars made with sand washing waste. Construction and Building Materials, 122, 728–735. https://doi.org/10.1016/j.conbuildmat.2016.06.086

Khavryuchenko, V. D., Khavryuchenko, O. V., & Lisnyak, V. V. (2011). Formation of pyrogenic silica: Spectroscopic and quantum chemical insight. Critical Reviews in Solid State and Materials Sciences, 36(2), 47–65. https://doi.org/10.1080/10408436.2011.572741

Kong, D., Du, X., Wei, S., Zhang, H., Yang, Y., & Shah, S. P. (2012). Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials. Construction and Building Materials, 37, 707–715. https://doi.org/10.1016/j.conbuildmat.2012.08.006

Kong, D., Su, Y., Du, X., Yang, Y., Wei, S., & Shah, S. P. (2013). Influence of nano-silica agglomeration on fresh properties of cement pastes. Construction and Building Materials, 43, 557–562. https://doi.org/10.1016/j.conbuildmat.2013.02.066

Li, Z., Wang, Y., & Wu, Y. (2020). Nano fumed silica particles on cement properties. IOP Conference Series: Earth and Environmental Science, 525, 012149. https://doi.org/10.1088/1755-1315/525/1/012149

Liu, H., Jin, J., Yu, Y., Liu, H., Liu, S., Shen, J., … Ji, H. (2020). Influence of halloysite nanotube on hydration products and mechanical properties of oil well cement slurries with nano-silica. Construction and Building Materials, 247, 118545. https://doi.org/10.1016/j.conbuildmat.2020.118545

Liu, J., Qin, Q., & Yu, Q. (2020). The effect of size distribution of slag particles obtained in dry granulation on blast furnace slag cement strength. Powder Technology, 362, 32–36. https://doi.org/10.1016/j.powtec.2019.11.115

Liu, M., Zhou, Z., Zhang, X., Yang, X., & Cheng, X. (2016). The synergistic effect of nano-silica with blast furnace slag in cement based materials. Construction and Building Materials, 126, 624–631. https://doi.org/10.1016/j.conbuildmat.2016.09.078

Lothenbach, B., Scrivener, K., & Hooton, R. D. (2011). Supplementary cementitious materials. Cement and Concrete Research, 41(12), 1244–1256. https://doi.org/10.1016/j.cemconres.2010.12.001

Ma, C., He, J., Qin, T., Long, G., Du, Y., & Xie, Y. (2020). A comparison of the influence of micro- and nano-silica on hydration kinetics of Portland cement under different temperatures. Construction and Building Materials, 248, 118670. https://doi.org/10.1016/j.conbuildmat.2020.118670

Mironyuk, I., Tatarchuk, T., Paliychuk, N., Heviuk, I., Horpynko, A., Yarema, O., & Mykytyn, I. (2019). Effect of surface-modified fly ash on compressive strength of cement mortar. Materials Today: Proceedings, 35, 534–537. https://doi.org/10.1016/j.matpr.2019.10.016

Šavija, B., Zhang, H., & Schlangen, E. (2020). Micromechanical testing and modelling of blast furnace slag cement pastes. Construction and Building Materials, 239, 117841. https://doi.org/10.1016/j.conbuildmat.2019.117841

Sekhar, D. C., & Nayak, S. (2018). Utilization of granulated blast furnace slag and cement in the manufacture of compressed stabilized earth blocks. Construction and Building Materials, 166, 531–536. https://doi.org/10.1016/j.conbuildmat.2018.01.125

Shaikh, F. U. A., Supit, S. W. M., & Sarker, P. K. (2014). A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes. Materials and Design, 60, 433–442. https://doi.org/10.1016/j.matdes.2014.04.025

Siang Ng, D., Paul, S. C., Anggraini, V., Kong, S. Y., Qureshi, T. S., Rodriguez, C. R., … Šavija, B. (2020). Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortars. Construction and Building Materials, 258, 119627. https://doi.org/10.1016/j.conbuildmat.2020.119627

Skibsted, J., & Snellings, R. (2019). Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cement and Concrete Research, 124, 105799. https://doi.org/10.1016/j.cemconres.2019.105799

Tobón, J. I., Mendoza Reales, O., Restrepo, O. J., Borrachero, M. V., & Payá, J. (2018). Effect of pyrogenic silica and nanosilica on portland cement matrices. Journal of Materials in Civil Engineering, 30(10), 04018266. https://doi.org/10.1061/(asce)mt.1943-5533.0002482

TS EN 196-1. (2016). Methods of testing cement - Part 1: Determination of strength. Ankara-TURKEY.

TS EN 771-1. (2015). Specification for masonry units - Part 1: Clay masonry units. Ankara-TURKEY.

TS EN 772-4. (2000). Methods of test for masonry units - Part 4: Determination of real and bulk density and of total and open porosity for natural stone masonry units. Ankara-TURKEY.

Veranth, J. M., Ghandehari, H., & Grainger, D. W. (2010). Nanoparticles in the Lung. In Comprehensive Toxicology, Second Edition (Vol. 8, pp. 453–475). Elsevier Inc. https://doi.org/10.1016/B978-0-08-046884-6.00928-3

Wang, J., Cheng, Y., Yuan, L., Xu, D., Du, P., Hou, P., … Wang, Y. (2020). Effect of nano-silica on chemical and volume shrinkage of cement-based composites. Construction and Building Materials, 247, 118529. https://doi.org/10.1016/j.conbuildmat.2020.118529

Wang, T., Ishida, T., Gu, R., & Luan, Y. (2020). Experimental investigation of pozzolanic reaction and curing temperature-dependence of low-calcium fly ash in cement system and Ca-Si-Al element distribution of fly ash-blended cement paste. Construction and Building Materials, 267, 121012. https://doi.org/10.1016/j.conbuildmat.2020.121012

Yeğinobalı, A. (2011). Silis dumanı ve çimento ile betonda kullanımı (7th ed.). Ankara: TÇMB/AR-GE Enstitüsü, TURKEY.

Yingliang, Z., Jingping, Q., Zhengyu, M. A., Zhenbang, G., & Hui, L. (2020). Effect of superfine blast furnace slags on the binary cement containing high-volume fly ash. Powder Technology, 375, 539–548. https://doi.org/10.1016/j.powtec.2020.07.094

Zhang, M. H., Islam, J., & Peethamparan, S. (2012). Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag. Cement and Concrete Composites, 34(5), 650–662. https://doi.org/10.1016/j.cemconcomp.2012.02.005

Zhu, N., Jin, F., Kong, X., Xu, Y., Zhou, J., Wang, B., & Wu, H. (2018). Interface and anti-corrosion properties of sea-sand concrete with fumed silica. Construction and Building Materials, 188, 1085–1091. https://doi.org/10.1016/j.conbuildmat.2018.08.040

Downloads

Published

2022-04-18

How to Cite

Görhan, G., & Bozkurt, A. M. . (2022). Investigation of properties of mortar containing pyrogenic silica-added supplementary cementitious materials. Revista De La Construcción. Journal of Construction, 21(1), 118–134. https://doi.org/10.7764/RDLC.21.1.118