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Abstract 
Objective of this research is to present a mathematical model for optimal design of rectangular cross-section beams with straight haunches under 
the criterion of minimum cost considering the concrete cost and reinforcing steel cost, and taking into account the equations of the regulation (ACI 
318S-14). This model presents the equations for a uniformly distributed load and a concentrated load located anywhere on the beam. Two 
examples are developed by the proposed model, one for uniformly distributed load and another for concentrated load showing the best solution 
for each case. The results show the following: a) The prismatic beams for uniformly distributed load have a total cost of the 8% greater, a total 
volume and a total weight of the 9% greater with respect to the non-prismatic beams; b) The prismatic beams for concentrated load have a total 
cost, a total volume and a total weight of the 6% greater with respect to the non-prismatic beams. The main conclusions are: For a smaller b width 
the optimal design for both models is presented. The non-prismatic beams are more economical, also these have less volume and less weight with 
respect to prismatic beams. 
 
Keywords: Optimal design, straight haunches, minimum cost, rectangular cross-section beams, uniformly distributed load, concentrated load. 

 

Introduction 
 
The beams of reinforced concrete with straight or parabolic haunches have been used in different types of structures 
as buildings and bridges. The beams with haunches (non-prismatic beams) have the following advantages with respect 
to prismatic beams: a) The rigidity increases, b) The relative displacements decrease, c) The use of concrete and 
reinforcing steel is more efficient, d) The architectural forms are more attractive, e) Facilitate the placement of 
electrical, hydraulic, air conditioning and sanitary installations in the building. 
 
The conventional procedure for the project of reinforced concrete beams has been to estimate the dimensions of the 
beam cross section, and to calculate the necessary steel area, in order to come to a solution. However, there are other 
solutions for the same beam. Through optimization techniques, it is possible to determine the section dimensions, 
steel areas and other beam parameters which minimize costs, meeting safety criteria. Thus, through optimization, an 
optimal solution is found.  
 
The design common practice is to provide the necessary reinforcement by flexural at the ends of the beams with 
haunches (top), extending at a distance equal to the anchoring length and development required to guarantee its 
nominal strength moment at the ends. Therefore, the longitudinal reinforcement is usually located in the zone of the 
haunches in top part, leaving the transition zone between the haunches and the intermediate prismatic section with 
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reinforcement in below part. This practice is based on the diagrams of bending moments of beams with straight or 
parabolic haunches in its ends under gravitational and live loads, where the bending moments increase at the ends 
and decrease along the longitudinal axis of the beam. This solution is well known for quite some time (Guldan, 1956). 
 
The mathematical models of beams with haunches have aroused great interest among structural analysis researchers. 
Most of the articles and books present the factors for fixed end moments, carry-over factors and stiffness factors used 
in the structural analysis matrix methods (Guldan, 1956; Portland Cement Association, 1958; Just, 1977; Schreyer, 
1978; Medwadowski, 1984; Brown, 1984; Tena-Colunga, 1996; Shooshtari & Khajavi, 2010; Yuksel, 2012; Luévanos-
Rojas, 2015; Luévanos-Rojas et al., 2016a, b; Luévanos-Soto & Luévanos-Rojas, 2017).  
 
The papers for optimal design of rectangular reinforced concrete beams are: Sensitivity analysis and optimum design 
curves for the minimum cost design of singly and doubly reinforced concrete beams applied the Lagrangian Multiplier 
Method (LMM) to obtain the minimum cost design for both cases (Ceramic & Fryer, 2000); Cost optimization of singly 
and doubly reinforced concrete beams with EC2-2001 taking to account the stress–strain diagrams (Barros et al., 
2005); Cost optimization of doubly reinforced rectangular beam section for simply supported beams under uniformly 
distributed and concentrated load (Bhalchandra & Adsul, 2012); Optimal design of reinforced concrete beams: A 
review of the available literature for minimum cost or weight (Rahmanian et al., 2014); Numerical experimentation for 
the optimal design of reinforced rectangular concrete beams for singly reinforced sections is presented to obtain the 
minimum cost and minimum weight (Luévanos-Rojas, 2016); Design optimization of reinforced concrete beams by 
optimization techniques (Chutani & Singh, 2017); Optimization of singly reinforced RC beams to obtain the minimum 
cost (Thomas & Arulraj, 2017); A study on cost optimized structural design of reinforced concrete beams using 
optimization techniques (Hisham-Ajmal, 2017); Optimization of reinforced concrete beams for rectangular sections 
with numerical experiments are presented for simply reinforced beams and doubly reinforced beams (Luévanos-Rojas, 
et al., 2018). These articles presented are just some of the studies on the topic. 
 
Therefore, the review of the literature clearly shows that there is no close relationship with the subject for the optimal 
design of reinforced concrete beams for rectangular sections with straight haunches that is addressed in this 
document. 
 
This document presents a mathematical model for the optimal design of rectangular cross-section beams with straight 
haunches (General case) using the minimum cost criterion taking into account the cost of concrete and the cost of 
reinforcing steel, and taking into account the equations of the code (ACI 318S-14) that is the novelty of this 
investigation. Two examples are developed by the proposed model, one for uniformly distributed load and another for 
concentrated load showing the best solution for each case, and the advantages of the non-prismatic beams are 
presented on the prismatic beams, and the two examples are shown by means of numerical experiments. 

 

Methodology 
Formulation of the proposed model 
 
The general formulation of an optimization problem is shown below: 
Objective function:  

Minimize:𝑓 𝑥  (1) 
Subject to: 

𝑕𝑗  𝑥 = 0, 𝑗 = 1, … ,𝑚

𝑔𝑘 𝑥 = 0, 𝑘 = 1,… , 𝑝

𝑥𝑖
𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑖

𝑚𝑎𝑥 , 𝑖 = 1, … , 𝑛

 (2) 

Figure 1 shows a beam of rectangular cross section with straight haunches subjected to two different types of loads 
and moments at their ends resulting from structural analysis. 
 

Figure 1. Rectangular non prismatic beam subjected to two types of loads: (a) 
Uniformly distributed load; (b) Concentrated load located anywhere on the beam. 

Source: Authors. 
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where: VA is the shear force in support A, VB is the shear force in support B, MA is the moment in support A, MB is the 
moment in support B, w is the uniformly distributed load, L is the length of the beam, P is the concentrated load, e is 
the distance where the concentrated load is located from support A, a is the horizontal distance of the straight 
haunches in support A, c is the horizontal distance of the straight haunches in support B. 
 
Table 1 shows the main mechanical elements to which the beam is subjected for two types of loads as a function of 
the bending moments that act on the ends, these result from the structural analysis. 
 

Table 1. Properties of the beams for different loads. Source: Authors. 

Concept Uniformly distributed load Concentrated load 

VA 𝑤𝐿

2
+
𝑀𝐴𝐵 −𝑀𝐵𝐴

𝐿
 

𝑃 𝐿 − 𝑒 

𝐿
+
𝑀𝐴𝐵 −𝑀𝐵𝐴

𝐿
 

VB 𝑤𝐿

2
−
𝑀𝐴𝐵 −𝑀𝐵𝐴

𝐿
 

𝑃𝑒

𝐿
−
𝑀𝐴𝐵 −𝑀𝐵𝐴

𝐿
 

Mx 
𝑉𝐴𝑥 − 𝑀𝐴𝐵 −

𝑤𝑥2

2
 

For 0 ≤ x ≤ e 
𝑉𝐴𝑥 − 𝑀𝐴𝐵  

For e ≤ x ≤ L − e 
𝑃𝑒 −  𝑃 − 𝑉𝐴 𝑥 − 𝑀𝐴𝐵  

a 𝑉𝐴 − 𝑉𝐴
2 − 2𝑤𝑀𝐴𝐵

w
 

𝑀𝐴𝐵

𝑉𝐴
 

c 
𝐿 −

𝑉𝐴 +  𝑉𝐴
2 − 2𝑤𝑀𝐴𝐵

w
 𝐿 −

𝑃𝑒 − 𝑀𝐴𝐵

𝑃 − 𝑉𝐴
 

xmax 𝑉𝐴
𝑤

 
𝑒 

Mmax 𝑉𝐴
2

2𝑤
−𝑀𝐴𝐵  

𝑉𝐴𝑒 − 𝑀𝐴𝐵  

 
where: Mx is the moment at a distance “x” measured from support A, Mmax is the positive maximum moment, xmax is 
the distance where the positive maximum moment is located from support A. 
 
The equations presented by the code are (ACI 318S-14, Luévanos-Rojas, 2016): 
 

𝑀𝑢 = Ø𝑓𝑏𝑑
2𝜌𝑓𝑦  1 – 

0.59𝜌𝑓𝑦

𝑓′
𝑐

  (3) 

𝜌 =
𝐴𝑠

𝑏𝑑
 (4) 

𝜌𝑏 =
0.85𝛽1𝑓′

𝑐

𝑓𝑦
 

600

600 + 𝑓𝑦
  (5) 

0.65 ≤ 𝛽1 =  1.05 −
𝑓 ′

𝑐

140
 ≤ 0.85 (6) 

𝜌𝑚𝑎𝑥 = 0.75𝜌𝑏  (7) 

𝜌𝑚𝑖𝑛 =

 
 
 

 
 0.25 𝑓′

𝑐

𝑓𝑦
1.4

𝑓𝑦

  (8) 

𝑀𝑢 = Ø𝑓𝑀𝑛  (9) 
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where: Mu is the maximum factorized moment, Øf is the reduction factor of resistance by bending and its value is 0.90, 
b is the base of the rectangular section, d is the effective depth, As is the steel area in tension, ρ is the percentage of 
reinforcing steel and is obtained by As/bd, β1 is the factor that relates the depth of the rectangular equivalent stress 
block of compression to the depth of the neutral axis, fy is the specified yield strength of the reinforcing steel, f'c is the 
compressive strength specified at 28 days, Mn is the nominal bending moment, ρmax is the maximum percentage of 
reinforcing steel, ρmin is the minimum percentage of reinforcing steel. 
 
Some specifications of the code mention the following (ACI 318S-14): At least 1/3 of the total tensile reinforcement in 
the support provided to resist negative moment must have an embedded length beyond the inflection point, not less 
than d, 12db or L/16, whichever is greater. 
 
Figure 2 shows the profile of the beam to observe the dimensions and the main reinforcement in general form. 
 

Figure 2. Beam with straight haunches. Source: Authors. 

 
 

The total cost function of the Ct beam is composed of the cost of the reinforcing steel Cs plus the cost of the Cc 
concrete (the cost of the formwork is not considered by limitation of the study). The total cost is: 
 

𝐶𝑡 = 𝐶𝑠𝑉𝑠 + 𝐶𝑐𝑉𝑐  (10) 
 
where: Vs is the volume of reinforcing steel, Vc is the volume of concrete. 
 
The volume of reinforcing steel is: 
 

𝑉𝑠 =
𝐴𝑠1 3𝑎 + 𝑓 

3
+ 𝐴𝑠2 𝐿 − 𝑎 − 𝑐 +

𝐴𝑠3 3𝑐 + 𝑔 

3
 (11) 

 
The volume of concrete is:  
 

𝑉𝑐 = 𝑏  𝑕𝐿 +
𝑎 𝐻𝑎 − 𝑕 

2
+
𝑐 𝐻𝑐 − 𝑕 

2
 −  

𝐴𝑠1 3𝑎 + 𝑓 

3
+ 𝐴𝑠2 𝐿 − 𝑎 − 𝑐 +

𝐴𝑠3 3𝑐 + 𝑔 

3
  (12) 

 
where: As1 is the reinforcing steel area in the haunches of the support A, As2 is the reinforcing steel area in the central 
part, As3 is the reinforcing steel area in the haunches of the support B, Ha is the height of the beam in support A, h is 
the height of the beam in the central part, Hc is the height of the beam in support B, f is the distance provided by the 
ACI (d, 12db o L/16, whichever is greater) for the support A, g is the distance provided by the ACI (d, 12db o L/16, 
whichever is greater) for the support B. 
 
The heights of the beam are obtained by: 
 

𝐻𝑎 = 𝑑𝑎 + 𝑟 (13) 
𝑕 = 𝑑 + 𝑟 (14) 
𝐻𝑐 = 𝑑𝑐 + 𝑟 (15) 

 
Substituting Eqs. (13), (14) and (15) into Eq. (12) is obtained: 
 

𝑉𝑐 = 𝑏   𝑑 + 𝑟 𝐿 +
𝑎 𝑑𝑎 − 𝑑 

2
+
𝑐 𝑑𝑐 − 𝑑 

2
 −  

𝐴𝑠1 3𝑎 + 𝑓 

3
+ 𝐴𝑠2 𝐿 − 𝑎 − 𝑐 +

𝐴𝑠3 3𝑐 + 𝑔 

3
  (16) 
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Now, substituting Eqs. (11) and (16) into Eq. (10) is obtained the general equation of the total cost: 
 

𝐶𝑡 = 𝐶𝑠  
𝐴𝑠1 3𝑎 + 𝑓 

3
+ 𝐴𝑠2 𝐿 − 𝑎 − 𝑐 +

𝐴𝑠3 3𝑐 + 𝑔 

3
 

+ 𝐶𝑐  𝑏   𝑑 + 𝑟 𝐿 +
𝑎 𝑑𝑎 − 𝑑 

2
+
𝑐 𝑑𝑐 − 𝑑 

2
 

−  
𝐴𝑠1 3𝑎 + 𝑓 

3
+ 𝐴𝑠2 𝐿 − 𝑎 − 𝑐 +

𝐴𝑠3 3𝑐 + 𝑔 

3
   

(17) 

 
Substituting α = Cs/Cc into Eq. (17), and the objective function is presented as follows: 
 

𝐶𝑡 = 𝐶𝑐  𝑏   𝑑 + 𝑟 𝐿 +
𝑎 𝑑𝑎 − 𝑑 

2
+
𝑐 𝑑𝑐 − 𝑑 

2
 

+  𝛼 − 1  
𝐴𝑠1 3𝑎 + 𝑓 

3
+ 𝐴𝑠2 𝐿 − 𝑎 − 𝑐 +

𝐴𝑠3 3𝑐 + 𝑔 

3
   

(18) 

 
The constraint functions are presented in general form as follows: 
 

𝑀𝐴𝐵

Ø𝑓𝑓𝑦
= 𝑑𝑎𝐴𝑠1  1 – 

0.59𝐴𝑠1𝑓𝑦

𝑏𝑑𝑎𝑓
′
𝑐

  (19) 

𝑀𝑚𝑎𝑥

Ø𝑓𝑓𝑦
= 𝑑𝐴𝑠2  1 – 

0.59𝐴𝑠2𝑓𝑦

𝑏𝑑𝑓 ′
𝑐

  (20) 

𝑀𝐵𝐴

Ø𝑓𝑓𝑦
= 𝑑𝑐𝐴𝑠3  1 – 

0.59𝐴𝑠3𝑓𝑦

𝑏𝑑𝑐𝑓
′
𝑐

  (21) 

𝜌𝑎 , 𝜌, 𝜌𝑐 ≤ 0.75  
0.85𝛽1𝑓′

𝑐

𝑓𝑦
 

600

600 + 𝑓𝑦
   (22) 

𝜌𝑎 , 𝜌, 𝜌𝑐 ≥

 
 
 

 
 0.25 𝑓′

𝑐

𝑓𝑦
1.4

𝑓𝑦

  (23) 

𝐴𝑠1 = 𝜌𝑎𝑏𝑑𝑎  (24) 
𝐴𝑠2 = 𝜌𝑏𝑑 (25) 
𝐴𝑠3 = 𝜌𝑐𝑏𝑑𝑐  (26) 

 
Eq. (19) is obtained from the comparison of the moment that acts “MAB” and moment resistant in the support A “Eq. 
(3)”. Eq. (20) is found from the comparison of the moment that acts “Mmax” and moment resistant in the central part 
“Eq. (3)”. Eq. (21) is obtained from the comparison of the moment that acts “MBA” and moment resistant in the 
support B “Eq. (3)”. Eq. (22) is the maximum percentage of reinforcing steel in each part of the beam “Eqs. (5) to (7)”. 
Eq. (23) is the minimum percentage of reinforcing steel in each part of the beam “Eq. (8)”. Eq. (24) is the reinforcing 
steel in in the support A “Eq. (4)”. Eq. (25) is the reinforcing steel in in the central part “Eq. (4)”. Eq. (26) is the 
reinforcing steel in in the support B “Eq. (4)”. 
 
It is assumed that all variables are non-negative. 
 
where: ρa is the percentage of reinforcing steel in support A, ρ is the percentage of reinforcing steel in the central part 
and ρc is the percentage of reinforcing steel in support B. 
 
The total volume of beam Vt is obtained as follows: 
 

𝑉𝑡 = 𝑏  𝑕𝐿 +
𝑎 𝐻𝑎 − 𝑕 

2
+
𝑐 𝐻𝑐 − 𝑕 

2
  (27) 

 
The total weight of the beam Wt is found as follows: 
 

𝑊𝑡 = 𝑊𝑠𝑉𝑠 + 𝑊𝑐𝑉𝑐  (28) 
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where: Ws is the weight of the reinforcing steel, Wc is the weight of the concrete. 
 
Substituting μ = Ws/Wc into Eq. (28), and the weight of the beam is presented as follows: 
 

𝑊𝑡 = 𝜇𝑊𝑐𝑉𝑠 + 𝑊𝑐𝑉𝑐  (29) 
 
Application of the model 
 
In this section, two numerical examples are presented to validate the proposed model. Example 1 shows the design of 
a beam subjected to a uniformly distributed load. Example 2 presents the design of a beam subjected to a 
concentrated load. For both examples, the optimization method is used by the MAPLE-15 software to found the 
optimal solution, and numerical experiments are also presented for each example, fixing certain parameters. 
 
Example 1 
 
Design a beam subjected to a uniformly distributed load with straight haunches. The basic data are: L = 10.00 m; w = 
150 kN/m; MAB = 1000 kN-m; MBA = 1400 kN-m; f´c = 28 MPa; fy = 420 MPa and α = 90. According to the code is 
considered: r = 4 cm, f = da, g = dc. Substituting L = 10.00 m; w = 150 kN/m; MAB = 1000 kN-m; MBA = 1400 kN-m into 
the equations shown in Table 1 for uniformly distributed load are obtained: VA = 710.00 kN, VB = 790.00 kN, Mx = 710x 
– 1000 – 75x

2
, a = 1.72 m, c = 2.25 m, xmax = 4.73 m, Mmax = 680.33 kN-m. 

 
Now, substituting this information in Eqs. (18) to (26) are obtained the objective function and the constraint functions. 
 
The objective function is: 
 
𝐶𝑡 = 𝐶𝑐 𝑏 0.86𝑑𝑎 + 1.13𝑑𝑐 + 8.01𝑑 + 0.4 + 29.67𝐴𝑠1𝑑𝑎 + 29.67𝐴𝑠3𝑑𝑐 + 153.21𝐴𝑠1 + 536.11𝐴𝑠2 + 200.68𝐴𝑠3  

 
Subject to: 
 

1

378
= 𝑑𝑎𝐴𝑠1  1 – 

177𝐴𝑠1

20𝑏𝑑𝑎

  

2041

1134000
= 𝑑𝐴𝑠2  1 – 

177𝐴𝑠2

20𝑏𝑑
  

1

270
= 𝑑𝑐𝐴𝑠3  1 – 

177𝐴𝑠3

20𝑏𝑑𝑐

  

𝜌𝑎 , 𝜌, 𝜌𝑐 ≤ 0.02125 
𝜌𝑎 , 𝜌, 𝜌𝑐 ≥ 0.00333 

𝐴𝑠1 = 𝜌𝑎𝑏𝑑𝑎  
𝐴𝑠2 = 𝜌𝑏𝑑 
𝐴𝑠3 = 𝜌𝑐𝑏𝑑𝑐  

 
It is assumed that all variables are non-negative. 
 
Table 2 shows the results fixing b = 30, 40, 50, 60, 70 cm, and the project variables are: As1, As2, As3, da, d, dc, ρa, ρ, ρc. 
 
Table 3 shows the results fixing b = 30 cm, and ρa, ρ, ρc = 0.02125, 0.01500, 0.01000, 0.00500, 0.00333, and the project 
variables are: As1, As2, As3, da, d, dc. 
 
Table 4 shows the results fixing b = 30, 40, 50, 60, 70 cm, and the project variables are: da = d = dc, As1, As2, As3, ρa, ρ, ρc. 
 

Table 2. Fixing b = 30, 40, 50, 60, 70 cm. Source: Authors. 

b 
cm 

As1 
cm

2
 

As2 
cm

2
 

As3 
cm

2
 

da 

cm 
d 

cm 
dc 

cm ρa ρ ρc Ct 

30 20.38 26.70 24.14 135.79 75.29 160.52 0.00500 0.01182 0.00501 5.25Cc 

40 23.57 30.83 27.92 117.45 65.21 138.85 0.00502 0.01182 0.00503 6.05Cc 

50 26.38 34.46 31.24 104.95 58.32 124.09 0.00503 0.01182 0.00503 6.76Cc 

60 28.92 37.75 34.25 95.74 53.24 113.21 0.00503 0.01182 0.00504 7.41Cc 

70 31.25 40.78 37.01 88.60 49.29 104.76 0.00504 0.01182 0.00505 8.01Cc 
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Table 3. Fixing b = 30 cm, and ρa, ρ, ρc = 0.02125, 0.01500, 0.01000, 0.00500, 0.00333. Source: Authors. 
b 

cm 
As1 
cm

2
 

As2 
cm

2
 

As3 
cm

2
 

da 

cm 
d 

cm 
dc 

cm ρa ρ ρc Ct 

30 45.58 37.59 53.93 71.49 58.97 84.59 0.02125 0.02125 0.02125 6.04Cc 

30 37.05 30.56 43.84 82.33 67.91 97.43 0.01500 0.01500 0.01500 5.60Cc 

30 29.51 24.34 34.91 98.36 81.13 116.38 0.01000 0.01000 0.01000 5.38Cc 

30 20.38 16.81 24.11 135.84 112.05 160.73 0.00500 0.00500 0.00500 5.60Cc 

30 16.51 13.62 19.54 165.10 136.18 195.35 0.00333 0.00333 0.00333 6.05Cc 

 
Table 4. Fixing b = 30, 40, 50, 60, 70 cm, and da, d, dc are equal (constant cross section). Source: Authors. 

b 
cm 

As1 
cm

2
 

As2 
cm

2
 

As3 
cm

2
 

da 

cm 
d 

cm 
dc 

cm ρa ρ ρc Ct 

30 29.45 19.40 43.18 98.52 98.52 98.52 0.00996 0.00656 0.01461 5.65Cc 

40 34.05 22.42 49.93 85.23 85.23 85.23 0.00999 0.00658 0.01464 6.51Cc 

50 38.10 25.09 55.87 76.18 76.18 76.18 0.01000 0.00659 0.01467 7.27Cc 

60 41.76 27.50 61.25 69.51 69.51 69.51 0.01001 0.00659 0.01469 7.97Cc 

70 45.13 29.72 66.19 64.33 64.33 64.33 0.01002 0.00660 0.01470 8.61Cc 

 
Example 2 
 
Design a beam subjected to a concentrated load with straight haunches. The basic data are: L = 10.00 m; P = 1000 kN; 
e = 3.00 m; MAB = 1000 kN-m; MBA = 1400 kN-m; f´c = 28 MPa; fy = 420 MPa and α = 90. According to the code is 
considered: r = 4 cm, f = da, g = dc. Substituting L = 10.00 m; P = 1000 kN; e = 3.00 m; MAB = 1000 kN-m; MBA = 1400 kN-
m into the equations shown in Table 1 for concentrated load are obtained: VA = 660.00 kN, VB = 340.00 kN, Mx = 660x 
– 1000 for 0 ≤ x ≤ e, Mx = 2000 – 340x for e ≤ x ≤ L − e, a = 1.52 m, c = 4.12 m, xmax = 3.00 m, Mmax = 980.00 kN-m. 
 
Now, substituting this information in Eqs. (18) to (26) are obtained the objective function and the constraint functions. 
 
The objective function is: 
 
𝐶𝑡 = 𝐶𝑐 𝑏 0.78𝑑𝑎 + 2.06𝑑𝑐 + 7.18𝑑 + 0.4 + 29.67𝐴𝑠1𝑑𝑎 + 29.67𝐴𝑠3𝑑𝑐 + 134.85𝐴𝑠1 + 388.68𝐴𝑠2 + 366.47𝐴𝑠3  

 
Subject to: 
 

1

378
= 𝑑𝑎𝐴𝑠1  1 – 

177𝐴𝑠1

20𝑏𝑑𝑎

  

7

2700
= 𝑑𝐴𝑠2  1 – 

177𝐴𝑠2

20𝑏𝑑
  

1

270
= 𝑑𝑐𝐴𝑠3  1 – 

177𝐴𝑠3

20𝑏𝑑𝑐

  

𝜌𝑎 , 𝜌, 𝜌𝑐 ≤ 0.02125 
𝜌𝑎 , 𝜌, 𝜌𝑐 ≥ 0.00333 

𝐴𝑠1 = 𝜌𝑎𝑏𝑑𝑎  
𝐴𝑠2 = 𝜌𝑏𝑑 
𝐴𝑠3 = 𝜌𝑐𝑏𝑑𝑐  

 
It is assumed that all variables are non-negative. 
 
Table 5 shows the results fixing b = 30, 40, 50, 60, 70 cm, and the project variables are: As1, As2, As3, da, d, dc, ρa, ρ, ρc. 
 
Table 6 shows the results fixing b = 30 cm, and ρa, ρ, ρc = 0.02125, 0.01500, 0.01000, 0.00500, 0.00333, and the project 
variables are: As1, As2, As3, da, d, dc. 
 
Table 7 shows the results fixing b = 30, 40, 50, 60, 70 cm, and the project variables are: da = d = dc, As1, As2, As3, ρa, ρ, ρc. 
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Table 5. Fixing b = 30, 40, 50, 60, 70 cm. Source: Authors. 

b 
cm 

As1 
cm

2
 

As2 
cm

2
 

As3 
cm

2
 

da 

cm 
d 

cm 
dc 

cm ρa ρ ρc Ct 

30 20.35 35.15 24.25 135.97 84.13 159.87 0.00499 0.01393 0.00506 5.96Cc 

40 23.54 40.59 28.02 117.58 72.86 138.36 0.00501 0.01393 0.00506 6.87Cc 

50 26.35 45.38 31.35 105.06 65.17 123.70 0.00502 0.01393 0.00507 7.68Cc 

60 28.89 49.71 34.35 95.83 59.49 112.88 0.00502 0.01393 0.00507 8.41Cc 

70 31.22 53.69 37.12 88.67 55.08 104.48 0.00503 0.01393 0.00507 9.09Cc 

 
Table 6. Fixing b = 30 cm, and ρa, ρ, ρc = 0.02125, 0.01500, 0.01000, 0.00500, 0.00333. Source: Authors. 

b 
cm 

As1 
cm

2
 

As2 
cm

2
 

As3 
cm

2
 

da 

cm 
d 

cm 
dc 

cm ρa ρ ρc Ct 

30 45.58 45.11 53.93 71.49 70.77 84.59 0.02125 0.02125 0.02125 6.91Cc 

30 37.05 36.68 43.84 82.33 81.51 97.42 0.01500 0.01500 0.01500 6.41Cc 

30 29.51 29.21 34.91 98.36 97.37 116.38 0.01000 0.01000 0.01000 6.18Cc 

30 20.38 20.17 24.11 135.84 134.48 160.73 0.00500 0.00500 0.00500 6.46Cc 

30 16.51 16.34 19.54 165.10 163.44 195.35 0.00333 0.00333 0.00333 6.99Cc 

 
Table 7. Fixing b = 30, 40, 50, 60, 70 cm, and da, d, dc are equal (constant cross section). Source: Authors. 

b 
cm 

As1 
cm

2
 

As2 
cm

2
 

As3 
cm

2
 

da 

cm 
d 

cm 
dc 

cm ρa ρ ρc Ct 

30 25.83 25.28 37.42 110.02 110.02 110.02 0.00783 0.00766 0.01134 6.33Cc 

40 29.85 29.21 43.24 95.22 95.22 95.22 0.00784 0.00767 0.01135 7.30Cc 

50 33.40 32.68 48.37 85.13 85.13 85.13 0.00785 0.00768 0.01137 8.16Cc 

60 36.60 35.81 53.01 77.68 77.68 77.68 0.00785 0.00768 0.01137 8.94Cc 

70 39.54 38.69 57.28 71.90 71.90 71.90 0.00786 0.00769 0.01138 9.66Cc 

 
 

Results 
 
Tables 2, 3 and 4 show the results of example 1. Table 2 shows the results fixing b = 30, 40, 50, 60, 70 cm. Table 3 
shows the results fixing b = 30 cm, and ρa, ρ, ρc = 0.02125, 0.01500, 0.01000, 0.00500, 0.00333. Table 4 shows the 
results fixing b = 30, 40, 50, 60, 70 cm, and da, d, dc are equal. For Table 2 the following is observed: when b increases, 
the steel areas As1, As2, As3 increase, the effective deeps da, d, dc decrease, the percentages of reinforcing steel ρa, ρc 
slightly increase, and ρ is constant, and the total cost Ct increases. For Table 3 the following is observed: when b 
remains constant and the percentages of reinforcing steel ρa, ρ, ρc decrease, the steel areas As1, As2, As3 decrease, the 
effective deeps da, d, dc increase, and the total cost Ct decreases until 5.38Cc and subsequently increases. For Table 4 
the following is observed: when b increases and da, d, dc are constant, the steel areas As1, As2, As3 increase, the 
percentages of reinforcing steel ρa, ρ, ρc increase, and the total cost Ct increases. 
 
Tables 5, 6 and 7 show the results of example 2. Table 5 shows the results fixing b = 30, 40, 50, 60, 70 cm. Table 6 
shows the results fixing b = 30 cm, and ρa, ρ, ρc = 0.02125, 0.01500, 0.01000, 0.00500, 0.00333. Table 7 shows the 
results fixing b = 30, 40, 50, 60, 70 cm, and da, d, dc are equal. For Table 5 the following is observed: when b increases, 
the steel areas As1, As2, As3 increase, the effective deeps da, d, dc decrease, the percentages of reinforcing steel ρa, ρc 
slightly increase, and ρ is constant, and the total cost Ct increases. For Table 6 the following is observed: when b 
remains constant and the percentages of reinforcing steel ρa, ρ, ρc decrease, the steel areas As1, As2, As3 decrease, the 
effective deeps da, d, dc increase, and the total cost Ct decreases until 6.18Cc and subsequently increases. For Table 7 
the following is observed: when b increases and da, d, dc are constant, the steel areas As1, As2, As3 increase, the 
percentages of reinforcing steel ρa, ρ, ρc increase, and the total cost Ct increases. 
 
Figure 3 shows the trends of the steel area that is observed in Tables 2 and 5. 
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Figure 3. Trends of the steel area of the Tables 2 and 5. Source: Authors. 

 
 
Figure 4 shows the trends of the effective depth that is observed in Tables 2 and 5. 

 
Figure 4. Trends of the effective depth of the Tables 2 and 5. Source: Authors. 

 
 
Figure 5 shows the trends of the percentage of reinforcing steel that is observed in Tables 2 and 5. 

 
Figure 5. Trends of the percentage of reinforcing steel of the Tables 2 and 5. Source: Authors. 

 
 
Figure 6 shows the trends of the steel area that is observed in Tables 3 and 6. 
 

Figure 6. Trends of the steel area of the Tables 3 and 6. Source: Authors. 
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Figure 7 shows the trends of the effective depth that is observed in Tables 3 and 6. 
 

Figure 7. Trends of the effective depth of the Tables 3 and 6. Source: Authors. 

 
 
Figure 8 shows the trends of the steel area that is observed in Tables 4 and 7. 
 

Figure 8. Trends of the steel area of the Tables 4 and 7. Source: Authors. 

 
 
Figure 9 shows the trends of the percentage of reinforcing steel that is observed in Tables 4 and 7. 

 
Figure 9. Trends of the percentage of reinforcing steel of the Tables 4 and 7. Source: Authors. 

 
 

 
Figure 10 shows the comparison with respect to the total cost based on the number of times of the concrete cost of 
the beam subjected to a uniformly distributed load (Example 1) of Table 2 (Non-prismatic beam) and Table 4 
(Prismatic beam), and the comparison with respect to the total cost based on the number of times of the concrete 
cost of the beam subjected to a concentrated load located to 3.00 m from support A (Example 2) of Table 5 (Non-
prismatic beam) and Table 7 (Prismatic beam). 
 
Now, the corresponding values are substituted into Eq. (25) to obtain the total volume of the beam. Consider μ = 3 
which is the ratio of the weight of reinforcing steel to the weight of the concrete, and substituting into Eq. (27) to find 
the total weight of the beam. 
 
Table 8 shows the comparison between the cost, volume, and weight of the non-prismatic beam and the prismatic 
beam of the example 1 (Uniformly distributed load). 
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Figure 10. Comparison of total cost for the two examples. Source: Authors. 

 
 

Table 8. Comparison for uniformly distributed load. Source: Authors. 

b 
cm 

Total cost 
 Total volume 

m3 
 

Total weight 

NPB PB PB/NPB  NPB PB PB/NPB  NPB PB PB/NPB 

30 5.25Cc 5.65Cc 1.08  2.82 3.08 1.09  2.88Wc 3.13Wc 1.09 

40 6.05Cc 6.51Cc 1.08  3.28 3.57 1.09  3.34Wc 3.64Wc 1.09 

50 6.76Cc 7.27Cc 1.08  3.69 4.01 1.09  3.76Wc 4.08Wc 1.09 

60 7.41Cc 7.97Cc 1.08  4.06 4.41 1.09  4.13Wc 4.49Wc 1.09 

70 8.01Cc 8.61Cc 1.07  4.40 4.78 1.09  4.48Wc 4.87Wc 1.09 

 
Table 9 shows the comparison between the cost, volume, and weight of the non-prismatic beam and the prismatic 
beam of the example 2 (Concentrated load). 
 

Table 9. Comparison for concentrated load. Source: Authors. 

b 
cm 

Total cost 
 Total volume 

m3 
 

Total weight 

NPB PB PB/NPB  NPB PB PB/NPB  NPB PB PB/NPB 

30 5.96Cc 6.33Cc 1.06  3.23 3.42 1.06  3.29Wc 3.49Wc 1.06 

40 6.87Cc 7.30Cc 1.06  3.75 3.97 1.06  3.82Wc 4.04Wc 1.06 

50 7.68Cc 8.16Cc 1.06  4.21 4.46 1.06  4.29Wc 4.54Wc 1.06 

60 8.41Cc 8.94Cc 1.06  4.64 4.90 1.06  4.72Wc 4.99Wc 1.06 

70 9.09Cc 9.66Cc 1.06  5.03 5.31 1.06  5.12Wc 5.41Wc 1.06 

 
For Table 8 the following is observed: the prismatic beams have a total cost of the 8% greater with respect to the non-
prismatic beams, and also the prismatic beams have a total volume and a total weight of the 9% greater with respect 
to the non-prismatic beams (see example 1). 
 
For Table 9 the following is observed: the prismatic beams have a total cost, a total volume and a total weight of the 
9% greater with respect to the non-prismatic beams (see example 2). 

 

Conclusions 
 
In the present work a methodology has been presented to evaluate the optimal design for beams of rectangular cross 
section with straight haunches (symmetrical or not symmetrical). 
 
This research shows two practical examples of the proposed model. Example 1 considers a uniformly distributed load 
w = 150 kN/m on the beam. Example 2 considers a concentrated load P = 1000 kN applied at a distance e = 3.00 m 
from support A. 
 
The main conclusions are: 
1.- For a smaller width b, the optimal design for both models is presented (see Tables 2 and 5). 
2.- Non-prismatic beams are more economical with respect to prismatic beams (see Figs 4 and 5, Tables 8 and 9). The 
non prismatic beams for uniformly distributed load have a cost of 92.59%, and for concentrated load have a cost of 
94.34% with respect to the prismatic beams. 
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3.- Non-prismatic beams have less volume with respect to the prismatic beams (see Tables 8 and 9). The non prismatic 
beams for uniformly distributed load have a volume of 91.74%, and for concentrated load have a volume of 94.34% 
with respect to the prismatic beams. 
4.- Non-prismatic beams have less weight with respect to the prismatic beams (see Tables 8 and 9). The non prismatic 
beams for uniformly distributed load have a weight of 91.74%, and for concentrated load have a weight of 94.34% 
with respect to the prismatic beams. 
 
The conclusions presented above are only for the examples presented in this document, and in other optimization 
situations, different conclusions can be obtained. 
 
Other advantages of the non-prismatic beams on the prismatic beams are: 
 
1.- The beams with haunches are cheaper than the beams of constant section. 
2.- The beams with haunches are lighter than the beams of constant section, therefore the members that support 
these beams must be more economical and can have greater savings in the materials. 
 
Therefore the formulation of the proposed model (optimal design) should be as follows: 
 
1.- The known parameters are: Moments applied in the supports (MAB and MBA) are obtained from a structural 
analysis; Transverse loads to the beam (w and/or P, e); Total length of the beam (L); Resistance of the materials that 
take part in the construction (fy and f'c). 
2.- From Table 1 are obtained: VA, VB, Mx, a, c, xmax, Mmax for each type of load. Parameters a and c are the distances of 
the haunches and are made to coincide with the inflection points. 
3. The objective function is obtained by substituting the parameters L, a, c, r into Eq. (18). 
4.- The constraint functions are found by substituting the parameters MAB, Mmax, MBA, Øf, fy, f’c into Eqs. (19) to (26). 
5.- If the objective function and the constraint functions are defined, the width b of the beam must be fixed according 
to the code (ACI 318S-14). 
 
Future research suggestions may be: 
 
1.- Take into account the cost of the formwork 
2.- Vary the values of the beam span, the load, the position of the concentrated load, α (ratio of the cost of steel to 
the cost of concrete). 
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