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Abstract 
In this paper, an analytic study is presented to investigate the effect of crack length on the single-lap shear joint under tensile load and to analyze the 
distribution of adhesive shear stress. A parametric study was conducted in accordance with changes in dimensions of the pre-crack position to 
evaluate shear stress along the bonded joint. A finite element analysis (FEA) was proposed for validation of our analytic model and for determination 
of stress concentration points of the pre-crack and the two edges of the bonded assembly. Results in this paper show good agreement between 
analytic study and the FEA model for shear stress at both free edges of adhesive. 
 
Keywords: composite, shear stress, bonded assembly, crack, structure. 

 
Resumen 
En este trabajo, se presenta un estudio analítico para investigar el efecto de la longitud de la fisura en la junta de cizalla de sola vuelta bajo carga de 
tracción y para analizar la distribución del esfuerzo cortante adhesivo. El estudio paramétrico se realizó de acuerdo con los cambios en las dimensiones 
de la posición de pre-grieta, para evaluar la tensión de cizallamiento a lo largo de la junta pegada. Se propuso un análisis de elementos finitos (FEA), 
para la validación de nuestro modelo analítico y para la determinación de puntos de concentración de esfuerzos de la pre-grieta y los dos bordes del 
conjunto unido. Los resultados en este documento muestran una buena concordancia entre el estudio analítico y el modelo de FEA para el esfuerzo 
cortante, en ambos bordes libres del adhesivo. 
 
Palabras clave: compuesto, tensión de cizallamiento, ensamble pegado, grieta, estructura. 

 

Introduction and Description of the Problem 
 
Adhesive bonding features many advantages over traditional techniques, such as riveting or welding. First, adhesive 
bonding is rapidly implemented, especially because of its automated application. This technique allows fitting of 
different fragile or thin materials. Blending between materials continuously occurs to avoid stress concentrations. 
Adhesive bonding produces higher mechanical strength than that produced by riveting. Furthermore, adhesive bonding 
does not require significant local heating; thus, compared with welding, this method does not alter the properties of 
materials to be assembled. Weight gain is important for structure by replacing bolts; rivets with a few linear meters of 
glue. Adhesives absorb some vibration and provide both acoustic and electric thermal insulation. However, bonding 
technique for assembling complex surface preparation must be meticulous. Many models for adhesive bonded joints 
were developed using single-lap joint geometries. This configuration has been adopted by (ASTM) the American Society 
of Testing Materials as standard mechanical test for the determination of distribution shear stress. Goland & Reissner 
(1944) were the first to include the effects of eccentric load path by applying moments at the edges of the joint. Erdogan 
& Ratwan(1971) single-lap joint configurations have been studied for about 60years, and numerous analytic and 
numerical models have been developed. Hart-Smith(1973) provided a considerable amount of work on glued joints that 
are in single layer, double overlapped, stepped, and chamfered. Analytic solutions have incorporated thermal effects 
and the effects of imbalance rigidity. In addition,Hart-Smith(1985) became interested in non-linear behavior of 
adhesives and developed an approach to perfect elastic-plastic bonding. Hutchinson & Suo(1991) believed that most of 
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the important fracture concepts for layered systems emerge in the analysis of steady-state cracking also Kairouz & 

Matthews (1993) investigated on Strength and failure modes of bonded single lap joints between cross-ply adherends. 
This method of analysis has been developed to investigate the size of crack in adherents near overlap ends and their 

effect on failure behavior of adhesive single lap joint byTong(1998).  
 
Numerical methods can be used to analyze models with arbitrary geometries and load conditions. The two-dimensional 
finite element analysis (FEA) of adhesive-bonded joints were adopted by many researchers, such as Rybicki & 
Kanninen(1977) calculation of stress intensity factors by a modified crack closure integral by Adams(1989) for Classical 
linear solutions of the lap joint problem discussed with more advanced versions; alsoLiyong Tong & Steven(1999). The 
problem of this study is the existence of crack length that significantly redistributes stresses in the adhesive layer and 
thus changes stress resultants in both adherends. The main objective of this paper is to study the effect of crack length 
on stress distributions in adhesive layer by introducing a corrector factor with the combination of (Goland & Reissner, 
1944) approach and (Cheuk & Tong, 2002) analysis. 

 

State of the Art 
Preparation of this manuscript aimed to achieve the following: 
- Simplification of the model and the governing differential equations 
- Results of deflection and bending moment for a single-overlap joint loaded with a tensile force 
- This work aimed to study the effect of crack length on shear stress distributions in adhesive layers. 
 

Nomenclature 
 
M1: Bending moment at position x1 (N.mm/mm); 
P:  Applied load (N/mm); 
w1: Deflection at position x1 (mm); 
RA: Reaction at crack point A (N/mm); 
MA: Bending moment at crack point A (N.mm/mm); 
M0: Bending moment at x0 position (N.mm/mm); 
αn: Eccentricity ratio (%); 
lA: Overlap length of single lap shear joint (mm); 
lB: Free lap length of single lap shear joint (mm); 
w0: Deflection of single lap shear joint at position x0(mm); 
h1: Upper adherend thickness (strap) (mm); 
h2: Lower adherend thickness (lap) (mm); 
t1: Adhesive thickness (mm); 
c: Overlap length of single lap shear joint (mm); 
Δ: Undimensional quantity (%); 
η: Thickness ratio of h1, h2(%); 
Σ: Young modulus ration of adherends (%); 

𝑅̂𝐴: Undimensional reaction force (%); 

𝑀̂𝐴 : Undimensional bending moment (%); 
Q1: Shear force at position x1(N.mm/mm); 
Q2: Shear force at position x2(N.mm/mm); 
D1: Adherend bending stiffness (N.mm); 
D2: Adherend bending stiffness (N.mm); 
E1: Young modulus of adherend (MPa); 
ν: Poisson ratio (%); 
𝑢1: Displacement at crack point x1(mm); 
𝑢2: Displacement at crack point x2(mm); 
xA: Half crack length at section A (mm); 
xB: Half crack length at section B (mm); 
k: Corrector factor for bending moment 
𝜏𝑥𝑦: Adhesive shear stress (MPa); 
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Methodology 
 

An analytic model was proposed to calculate forces and moments, resulting in different sections of the specimen, 
including the cracked zone and interface. The solution procedure involves comprehensive analysis of the joint. Figure1 
shows the joint with an imposed crack in the adherend. A concentrated load P is applied to the center line of each edge. 
Crack length c is imposed on the surface of adhesive at distance t1. Thickness of the substrate equals h, whereas 
thickness of adhesive is η. Two coordinate systems are involved: the first is located at the free edge [x0, z (w0)], and the 
other is located in the middle of the adhesive layer [x1, z (w1)]. The crack is bounded on both left and right sides by two 
sections A and B, respectively. The crack presents a crack tip at section A inside the overlap and a crack tip at section B 
outside the joint. As shown in Figure1, the crack features a length of xA + xB, where xA is the length of the crack part 
inside the overlap, and xB refers to the length of the crack part outside the overlap. 

 
Figure 1. Single-lap shear joint under tensile load. Source: Self-elaboration. 

 
 
for        0 ≤ 𝑥1 ≤ 𝑙𝐴 

 

𝑀1 = 𝑃 (𝛼𝑛𝑥1 − 𝑤1 +
𝑅𝐴

𝑃
𝑥1 +

𝑀𝐴

𝑃
)      (1) 

 
for        0 ≤ 𝑥0 ≤ 𝑙𝐵 
 

𝑀0 = 𝑃 [𝛼𝑛(𝑥0 + 𝑙𝐴) − 𝑤0 − (
ℎ1

2
+ ℎ2 − 𝛥ℎ1) +

𝑅𝐴

𝑃
(𝑥0 + 𝑙𝐴) +

𝑀𝐴

𝑃
]   (2) 

 
Similar to the thin plate’s cylindrical bending theory, the differential equations for the cross section, w1 and w0 are given 
by the following: 

 
𝑑2𝑤1

𝑑𝑥1
2 = −

𝑀1

𝐷1
= −

𝑃
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And 
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2 = −
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= −
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𝑄11ℎ3

12
   ;  𝐷1 =

2𝑄11ℎ3

3
    ;    𝑄11 =
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𝑀𝐴
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  and 𝑅̂𝐴= 

𝑅𝐴
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D0 and D1 are adherent bending stiffness. 
 
Solving differential Equations (3) and (4), we obtain the following: 

 
𝑤1

𝐿
= 𝐴1𝑐𝑜𝑠ℎ(𝜆1𝑥1) + 𝐵1𝑠𝑖𝑛ℎ(𝜆1𝑥1) + (𝛼𝑛 + 𝑅̂𝐴)

𝑥1

𝐿
+ 𝑀̂𝐴    (5) 

 
𝑤0

𝐿
= 𝐴0𝑐𝑜𝑠ℎ(𝜆0𝑥0) + 𝐵0𝑠𝑖𝑛ℎ(𝜆0𝑥0) + [(𝛼𝑛 + 𝑅̂𝐴)

(𝑥0+𝑙𝐴)

𝐿
− 𝛼𝑛 + 𝑀̂𝐴]  (6) 
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Global bending moments 𝑀𝐴 and 𝑀𝐵are obtained as follows: 
 
At crack tip A, 𝑥1 = 𝑥𝐴 
 

𝑀𝐴 =
𝑃.𝑡.𝑐𝑜𝑠ℎ(𝜆1.𝑥𝐴)

2
. (−1 +  𝑘 (1 +

(𝜇1.𝑡𝑎𝑛ℎ(𝜆1.𝑥𝐴))

(𝜇2.𝑡𝑎𝑛ℎ(𝜆0.𝑙))
))     (7) 

 
At crack tip B, 𝑥0 = 𝑥𝐵  

 

𝑀𝐵 =
𝑘.𝑃.𝑡.𝑠𝑖𝑛ℎ𝜆0(𝑙−𝑥𝐵)

2.𝑠𝑖𝑛ℎ(𝜆0.𝑙)
        (8) 

 

Bending moment factor according Goland and Reissner 

 
In this case, bending moment and shear force are non-collinear. When the imposed load P is weak, rotation in the 
overlap region becomes negligible; bending moment at the edge is expressed by the following: 
 

𝑀0 =
𝑃𝑡

2
         (9) 

 
When the load is increased, rotation in the overlap region becomes important. This rotation is transmitted to the edges 
of the bonded assembly. Considering this case, Goland & Reissner (1944) introduce the correction factor k, and hence, 
the bending moment at the edges of the bonded assembly is expressed again by the following: 
 

𝑀0 = 𝑘
𝑃𝑡

2
         (10) 

 
The factor k in expression (10) is constantly smaller than 1. 

 
Figure 2. Bending moment in deformed and undeformed joint under tensile load. Source: Self-elaboration. 

 
 

Given the changes in stiffness along the bonded assembly Goland & Reissner(1944) divided their analysis on the joint in 
three plates: the two members and the overlap region (Figure 2). Equality between two expressions (4) and (10) can be 
written as follows: 
 

𝑀0 = 𝐷. [
𝑑2𝑤

𝑑𝑥2 ]
𝑎𝑡𝑒𝑑𝑔𝑒

= 𝑘
𝑃𝑡

2
=

1

1+2√2𝑡𝑎𝑛ℎ
𝜆𝑐

2√2

𝑃𝑡

2
     (11) 

 
With k, the correction factor of Goland and Reissner’s bending moment is computed by the following:  
 

𝑘 =
1

1+2√2𝑡𝑎𝑛ℎ
𝜆𝑐

2√2

        (12) 

 
Where    

𝜆 = √12(1 − 𝜐2)
√𝑃/𝑡𝐸

𝑡
= √

𝑃

𝐷
      (13) 

 
Where E, t, ν are adherend properties, and c measures half the overlap length. 
 



 

416 
 

 

Derivation of these equations is based on the following assumptions: 

 The joint is symmetrical (identical adherends). 

 Joint width is large compared with adherend thickness. 

 Adhesive thickness is neglected. 

 Angle α of the line of action is negligible in calculation of edge tension. 
 

Shearing force 𝑄0 at the edge of the joint takes the form as follows: 
 

𝑄0 = −𝐷 [
𝑑3𝑤

𝑑𝑥3
]

𝑎𝑡 𝑒𝑑𝑔𝑒
= 𝑘

𝑃𝑡

2
√

𝑃

𝐷
      (14) 

 
Shearing force in the overlap zone is determined by the equilibrium of the relative moment (Figure 3). 

 
Figure 3. Adhesive joint cross section. Source: Self-elaboration. 

 
 

𝑄𝑒𝑞𝑢𝑖𝑙𝑖𝑟𝑢𝑚 =
(𝑡+𝑑)𝑃−2𝑀0

2𝑐
       (15) 

 
Shear stress is given by the ratio between the shear force and cross-section. By solving the second-order differential 
equation, Goland & Reissner(1944) led to the general expression for the shear stress.  
 

𝜏(𝑚) = [
𝛽.𝑐

𝑡
. (1 + 3. 𝑘).

𝑐𝑜𝑠ℎ[𝑐.
𝛽

𝑡
.𝑚]

𝑠𝑖𝑛ℎ[
𝛽.𝑐

𝑡
]

+ 3. (1 − 𝑘)] . 𝑝.
𝑡

𝛽.𝑐
   (16) 

𝛽 = √8.
𝐺𝑎. 𝑡

𝐸. 𝑑
 

 
Combination between study of (Cheuk & Tong, 2002) and approach of (Goland & Reissner, 1944) 
 
According to Cheuk & Tong(2002), bending moment MA can be possibly expressed in the presence of the crack with 
expression (7), but the existence of crack length significantly redistributes stresses in the adhesive layer and thus 
changes stress resultants in both adherends. 
 
A lot of work has been conducted to understand and predict failure behavior of adhesive-bonded single lap joints. Based 
on existing research, the two important studies in this case are as follows: 
 
Failure load increases by increasing crack length results, as predicted by Cheuk & Tong(2002). 
k factor decreases by increasing the applied load results, as predicted by Goland & Reissne(1944)and Hart-Smith (1973). 
 
From the two important studies, we can conclude that crack length increases as k factor decreases. 
 
From expression (7), we can extract factor k: 
 

 k =
(

2.MA
P.t

+cosh(μ2xA))

(1+(
μ1.tanh(μ2.xA)

(μ2.tanh(μ2.l))
))

       (17) 
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Results and discussion 
 
Therefore, for calculation of shear stress at the adhesive layer in the presence of crack, we can use the expression (16) 
of Goland & Reissner (1944). To visualize crack length effect on the values of shear stresses at the free edge of single-
lap shear joint, we focused only on the crack length xA in the expression (17). Table 1 shows the shear stress in the 
adhesive layer of single-lap shear joints. 

 
Table 1. Shear stress at free edge of overlap with k factor. Source: Self-elaboration. 

Half crack 
length XA (mm) 

 
Factor k 

Shear stress at free edge 

𝝉𝒎𝒂𝒙(MPa) 

0 0.3060 48.7997 
1 0.2718 46.4079 
2 0.2464 44.6336 
3 0.2275 43.3085 
4 0.2134 42.3215 
5 0.2030 41.5962 

 
This theory is based on differential equations for stresses of adhesive:  

 Mechanical properties of adherends same as the T300/934 ASTM from (ASTM, 1994) 

 Young’s modulus E= 57226Mpa  

 In plane Poisson ratio = 0.05 

 Out of plane Poisson ratio = 0.28 

 Mechanical properties of FM300K film adhesive ASTM (ASTM, 1994) 

 Nominal bondline thickness 0.16 mm 

 Young modulus Ea= 2400Mpa  

 Poisson ratio = 0.32 
Table 2. Parameters of the geometric adhesive-bonded assembly. Source: Self-elaboration. 

Geometrical parameters Values(mm) 
c : half-length covering 25 

b : width of the joint 25.4 

t : thickness of adherends 1.72 

d : Adhesive thickness 0.16 

 

Effect of crack length on adhesive shear stress  
 
The shear stress along the bondline (adhesive mid-layer) is calculated and plotted against the overlap length for single-
lap shear joint models with different crack lengths. Figure 4 shows shear stress distribution in the adhesive layer. We 
evaluated the shear stress at the edge in terms of gradual increase in crack length of 0–4 mm. From this figure, this 
stress visibly decreases as a function of crack length because the crack absorbs some of the energy dissipated to both 
edges. Distributions of shear stress for different crack lengths XA=2mm and XA=4mm show the same distribution as the 
model without crack-only difference for the maximum shear stress at the end of free edge of the overlap part of single-
lap shear joint. 

Figure 4. Variation in shear stress along the bonded joint according to variation 
in length of the half crack. Source: Self-elaboration. 
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Effect of crack position 
 
To evaluate the shear stress along the adhesive area, we varied the crack location from 0.215 mm to 1.075 mm of the 
bonded joint (Figure 5). As shown in Figure 5, the three curves follow the same pace, with the exception of a remarkable 
difference on the edge of the bonded joint. The presence of crack generates a small perturbation of stresses in the 
adhesive layer, and this perturbation or stress concentration decreases or disappears when the distance between the 
crack position and adhesive layer increases. 
 

Figure 5. Variation in shear stress as a function of the crack position xA=2mm. 
Source: Self-elaboration.  

 
  

 

Correlation between analytic and numerical results 
 
A good agreement exists between analytical and numerical results, as shown in Table 3. Maximum shear stress (at free 
edge) of adhesive layer care presented with different crack length when crack length increases from 2mm to 10mm. 
Maximum shear stress predicted by FEA and analytic model decreases, and a small difference is observed between both 
models, as shown in Table 3. 
  

Table 3. Comparison of maximum shear stress [MPa] between analytic and FEA results (Applied load: 410.22 N/mm). Source: Self-elaboration. 

Crack length 
(mm) 

Analytical model 
𝝉𝒎𝒂𝒙 

FEA Model 
𝝉𝒎𝒂𝒙 

Absolute relative 
difference (%) K factor 

No crack 74.6336 71.692 3.94 0.6757 

2 69.4567 68.561 1.29 0.6016 

4 65.4372 64.675 1.16 0.5441 

6 62.2691 62.450 0.29 0.4988 

8 59.7458 60.583 1.40 0.4627 

10 57.7237 58.083 0.62 0.4337 

 

Conclusions 
 
An analytic study was carried out to investigate and validate results through FEA of the evolution of stresses in a bonded 
joint at interface and free edge with a crack. The analytic model was proposed for determination of bending moment 
in the cracked zone. The balance of this moment has been transferred to the interface to calculate shear stress along 
the adhesive layer of bonded joint. From the present results, the following conclusions are drawn: 
 

 The presence of cracks significantly affects shear stress distribution in the adhesive layer. 

 The presence of distant cracks exerts no effect on the distribution of shear stresses in the adhesive. 

 Compared results showed good agreement between maximum shear stress of the cracked section calculated by FEA 
(ANSYS) and those of the analytic model at the free edge of adhesive layer. 

 
This study presented an investigation of the crack effect and mechanic behavior on a composite-repaired structure, 
which is very important in preparation of a desirable material composite for repairing damaged structures. 
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