
 

337 
 

Modeling the weight and length changes of the concrete exposed to 
sulfate using artificial neural network 
 
Modelización de los cambios de peso y longitud del concreto expuesto al sulfato mediante red 
neural artificial 

 
Veysel Akyuncu (Main Author) 

Namik Kemal University, Department of Civil Engineering 
Tekirdag (Turkey) 
veyselak@hotmail.com 
 

Mucteba Uysal (Corresponding Author) 

Istanbul University Cerrahpasa, Department of Civil Engineering 
Istanbul (Turkey) 
mucteba.uysal@istanbul.edu.tr 
 

Harun Tanyildizi 
Firat University, Department of Civil Engineering 
Elazig (Turkey) 
htanyildizi@firat.edu.tr 
 

Mansur Sumer 
Sakarya University, Department of Civil Engineering 
Sakarya (Turkey) 
msumer@sakarya.edu.tr 
 
Manuscript Code: 896 
Date of Acceptance/Reception: 28.06.2018/11.04.2017 
DOI: 10.7764/RDLC.17.3.337 
 
Abstract 
This paper presents the modeling of an experimental investigation carried out to evaluate some mechanical and durability properties of concrete 
mixtures in which cement was partially replaced with Class C and Class F fly ash. A total of 39 mixtures with different mix designs were prepared. 
After compressive strength testing, the mixtures containing Class F and Class C fly ashes which had similar compressive strength values to control 
mixtures at 28 d for each series were used for sulfate resistance tests. The degree of sulfate attack was evaluated using expansion and weight loss. 
The test results indicated that Class C fly ash showed higher compressive strength than Class F fly ash. Moreover, the addition of fly ash significantly 
increased the resistance to sulfate attack when each amount of fly ash addition regardless of fly ash types was employed. In this paper, the Artificial 
Neural Network (ANNs) techniques were used to model the relative change in the weight and length of the concrete exposed to sulfate. The best 
algorithm for length changes of concrete exposed to sulfate is BFGS quasi-Newton backpropagation algorithm while the best algorithm for weight 
changes of concrete exposed to sulfate is the Levenberg-Marquardt backpropagation algorithm.  
 
Key words: Class F fly ash, Class C fly ash, the weight change, the length change, sulfate resistance. 

 
Resumen 
Este artículo presenta el modelamiento de una investigación experimental llevada a cabo para evaluar algunas propiedades mecánicas y de 
durabilidad de mezclas de concreto en las cuales el cemento fue parcialmente reemplazado por cenizas volantes Clase C y Clase F. Se prepararon un 
total de 39 mezclas con diferentes diseños de mezclas. Después de la prueba de resistencia a la compresión, las mezclas que contenían cenizas 
volantes de Clase F y Clase C que tenían valores similares de resistencia a la compresión para controlar las mezclas en 28 d para cada serie fueron 
usadas en las pruebas de resistencia a los sulfatos. El grado de ataque de sulfato se evaluó mediante la expansión y la pérdida de peso. Los 
resultados de la prueba indicaron que la ceniza volante de clase C mostró una resistencia a la compresión mayor que de la ceniza volante de clase F. 
Además, la adición de cenizas volantes aumentó significativamente la resistencia al ataque de sulfatos cuando se empleó cada cantidad de adición 
de cenizas volantes, independientemente de los tipos de cenizas volantes. En este trabajo, las técnicas de la Red Neural Artificial (RNA) se usaron 
para modelar el cambio relativo en el peso y la longitud del concreto expuesto al sulfato. El mejor algoritmo para los cambios de longitud del 
concreto expuesto al sulfato es el algoritmo de retro propagación de BFGS quasi-Newton, mientras que el mejor algoritmo para los cambios de peso 
del concreto expuesto al sulfato es el algoritmo de retro propagación de Levenberg-Marquardt. 
 
Palabras clave: Cenizas volantes clase F; Cenizas volantes clase C; El cambio de peso; El cambio de longitud; Resistencia al sulfato. 
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Introduction 
 
The usage of industrial by-products in concrete, both in regard to environmental pollution and the positive effect on a 
country’s economy are beyond dispute (Topcu, & Canbaz, 2007). These waste products are often incorporated into 
the concrete to improve workability, mechanical and durability properties of concrete. These include fly ash, silica 
fume, ground granulated blast furnace slag and other calcined natural pozzolanic materials such as metakaolin (Atiş, & 
Karahan, 2009; Yen, Hsu, Liu, & Chen, 2007; Mohammed, & Fang, 2011; Li, & Zhao, 2003; Liu, 2010; Melo, & Carneiro, 
2010). The use of these waste products in concrete is increasing because they result in lower cost of construction and 
improve some physical, mechanical and durability properties of concrete in aggressive environments. It has been well 
established that fly ash, despite its slow rate of reaction, induces significantly improved workability and higher long-
term age strength by converting the calcium hydroxide into calcium silicate hydrate (C–S–H). FA is also quite effective 
in producing concrete with low permeability (Chung, Shon, & Kim, 2010). This definitely enhances chemical resistance 
by reducing the potential for ionic ingress, migration, and concentration, subsequently controlling expansion and 
crack associated with sulfate attack, alkali–silica reaction, and corrosion (Mehta, & Monteiro, 1993; Roy, Chye, & 
Northwood, 1993; Chatterji, 1995). The use of FA has been found to be beneficial in resisting the sulfate attacks into 
concrete because of the microstructural densification imparted by the pozzolanic reaction or secondary hydration of 
these materials (Jain, & Neithalath, 2010). The main useful effect of FA in concrete consists of three aspects, often 
called morphologic effect, pozzolanic effect, and micro aggregate effect. The morphologic effect states that there are 
many micro beads in FA working as “lubricating balls” when incorporated in fresh concrete; hence it benefits the 
fluidity. The micro aggregate effect of FA states the micro beads in FA can disperse well in concrete and combine 
firmly with gel produced in cement hydration, and thus promote concrete density. The pozzolanic effect is the main 
effect of FA, which states that the unfixed AI2O3 and SiO2 in FA can be activated by Ca(OH)2 product of cement 
hydration and produce more hydrated gel. Since the gel produced from pozzolanic action can fill in the capillary in 
concrete, it effectively conduces to concrete strength (Cao, Sun, & Qin, 2000).  
 
Fly ash is widely used in blended cements, and is a by-product of coal-fired electric power plants (Alonso, & Wesche, 
1991). Two general classes of fly ash can be defined: low-calcium fly ash (ASTM Class F) produced by burning 
anthracite or bituminous coal; and high-calcium fly ash (ASTM Class C) produced by burning lignite or sub-bituminous 
coal (Nochaiya, Wongkeo, & Chaipanich, 2010). Class F is categorized as a normal pozzolan, a material consisting of 
silicate glass, modified with aluminum and iron. Class F requires Ca(OH)2 to form strength-developing products 
(pozzolanic reactivity), and therefore is used in combination with Portland cement, which produces Ca(OH)2 during its 
hydration. It lowers the heat of hydration and improves the durability when used in concrete as a cement 
replacement. It also contributes to concrete strength by pozzolanic and filler effects (Papadakis, 1999). The current 
annual worldwide production of coal ash is estimated about 700 million tonnes of which at least 70% is fly ash 
(Papadakis, 1999). There are 29 thermal power plants actively working in Turkey. But Class F fly ash is obtained only 
from Catalagzi Thermal Power Plant, FA of all other plants is Class C. As for today, the annual fly ash production is 
about 20 million tones which is more than the rest of all industrial wastes in Turkey (Felekoglu, 2006). Although FA is a 
valuable mineral admixture for blended Portland cement and concrete, only about 4% of the total available FA is used 
for this purpose in Turkey (Aydin, Yiğiter, & Baradan, 2005). In particular, due to the energy demand, the production 
rate of FA is expected to increase in the future (Felekoglu, 2006).   
 
There have been numerous field studies on the distress caused to concrete structures generated by sulfate attack 
(Persson, 2003; Girardi, Vaona, & Di Maggio, 2010). Sulfate attack is one of the most aggressive environmental 
deteriorations that affect the long-term durability of concrete structures. The sulfate attack of concrete leads to 
expansion, cracking, and deterioration of many civil engineering structures exposed to sulfate environment (Al-Akhras, 
2006). The sulfate attack is generally attributed to the reaction of sulfate ions with calcium hydroxide and calcium 
aluminate hydrate to form gypsum and ettringite. The gypsum and ettringite formed as a result of sulfate attack is 
significantly more voluminous (1.2 to 2.2 times) than the initial reactants. The formation of gypsum and ettringite lead 
to expansion, cracking, deterioration, and disruption of concrete structures (Hooton, 1993). Concrete deterioration 
due to MgSO4 attack was attributed to the decalcification of C-S-H to form M-S-H, as well as the expansion caused by 
the formation of expansive salts (Hekal, Kishar, & Mostafa, 2002).  
 
Tanyildizi (2016) investigated the microstructure and strength properties of lightweight mortars containing fly ash and 
silica subjected to sulfate attack. He found that the performance of lightweight mortars containing silica fume were 
higher than lightweight mortars without mineral admixture and with fly ash. Tanyildizi (2018) studied healing of 
mortar exposed to sulfate attack. He reported that the concrete elements exposed to the sulfate attack could be 
healed with the polymer containing phosphazene. Torii, & Kawamura (1994) studied the resistance of concretes 
containing FA in 10% MgSO4 solution. FA appeared to significantly increase the sulfate resistance, but only above a 
certain content, which depended on the type of sulfate solution. Sorrentino et al. (Sorrentino, Lacroix, Gines, & 
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Chabanis, 1994) demonstrated by expansion and microstructural studies that concrete of moderate strength (40 MPa) 
was deteriorated in MgSO4. Large quantities of secondary ettringite and gypsum and a noncohesive M-S-H were 
formed. In higher strength concrete (e.g., 80 MPa), the reaction resulted in some compact layers of gypsum, 
aragonite, and brucite, which formed a barrier to prevent further attack. Thus, expansion was negligible even after 
immersion in seawater for 3 years. 
 
There were numerous studies carried out on the influence of FA in concrete mixture on mechanical and durability 
properties of concrete (Siddique, 2011; Malhotra, Zhang, Read, & Ryell, 2000). However, limited research work has 
been carried out concerning the effectiveness of Turkish Class C and Class F fly ashes in concrete and comparing their 
sulfate resistance properties which the mixtures containing fly ashes had similar compressive strength values to 
control mixtures for each series. 
 
ANNs are increasingly applied to solve various civil engineering problems (Trtnik, Kavčič, & Turk, 2009). There have 
been reports on the use of ANN in the modelling of concrete compressive strength (Ni, & Wang, 2000; Lai, & Serra, 
1997; Lee, 2003). Goktepe, Inan, Ramyar, & Sezer (2006) and Tanyildizi (2017) presented a neural network approach 
to determine sulfate expansion level of PC mortar using statistical and neural approaches. It has been pointed out that 
the all models exhibited relatively close performances varying within 0.91 and 0.94 in terms of R2 values. Inan, 
Göktepe, Ramyar, & Sezer (2007) reported an ANN model to predict sulfate expansion of PC mortar using adaptive 
neuro-fuzzy methodology. It has been indicated that ANFIS methodology produced the most successful results and 
was able to predict sulfate expansion levels precisely. 
 
The aim of this study is to construct an ANN model to predict the weight and the length change of the concretes 
containing Class C and Class F fly ashes subjected to sulfate environment. For this purpose, data for developing the 
ANN model are collected from the experiments. In the experiments, the degree of sulfate attack was evaluated by 
measuring the expansion of concrete prisms and weight change of concrete prisms which the specimens have been 
subjected to 15 % magnesium sulfate solutions for one year.  
 

Methodology 
 
Materials 
 
In this study, CEM I 42.5 N Portland cement, Class C and Class F fly ashes were used as binding materials. Their 
chemical compositions and properties are shown in Table 1. Both Class C and Class F fly ashes were obtained from 
power plants in Turkey. Specific gravity of the cement used was 3.12. Initial and final setting times of the cement were 
210 and 265 min, respectively. Crushed limestone aggregates with a maximum size of 16 mm were used as coarse 
aggregate. The specific gravity and water absorption of the aggregates were 2.71 and 0.26% and 2.69, 0.35%, 
respectively. A natural river sand with specific gravity of 2.61 and water absorption of 1.59 % was also employed. A 
uniform grading of aggregate mixture was prepared. The fineness modulus of the mixture is 4.09. Volume percentages 
of aggregates were kept constant in all mixtures. The particle size distributions of cement, Class C and Class F fly ashes 
were obtained by a laser scattering technique and are presented in Figure 1. 
 

 
Table 1. Properties of Portland cement and fly ashes. Source: Own elaboration.  

Chemical composition (%) 

Component (%) Cement Class C fly ash Class F fly ash 

SiO2 20.63 46.38 58.58 
Fe2O3 3.41 8.26 6.97 
AI2O3 4.71 13.9 23.4 
CaO 63.64 15.1 1.55 
MgO 1.24 6.68 2.76 
SO3 2.98 4.26 0.45 
CI- 0.04 0.06 0.03 
Loss Ignition 1.25 0.22 0.2 
K2O 0.91 2.78 4.11 
Na2O 0.23 2.13 0.46 
Free CaO 1.1 0.15 0.1 

Physical properties 

Specific Gravity 3.12 1.84 2.34 
Blaine (cm2/g) 3545 2850 3350 
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Figure 1. The particle size distributions of fly ashes and cement. Source: Own elaboration  

  
 
Mixture proportions  
 
Three different cement dosages were used and two different ratios which 10 % and 17 % of reduced cement from the 
control concretes and three different ratios (depending on cement reduction ratio) of fly ash were added into the 
mixtures. 
 
The workability degree of mixtures was similar to each other with a slump of 140-170 mm. The main variable in the 
mixtures was the cement, fly ash and the water content. The mixture proportions of the concretes are shown in Table 
2 and Table 3. The raw materials of concrete were put in a forced mixer at the same time and were mixed for 3 
minutes. The workability of fresh concrete including slump was measured immediately after the mixing was 
completed. The results are listed in Table 2 and Table 3. Slump, density and the air content of fresh concretes were 
obtained. The mixtures were cast into test specimens in mould by vibration. 36 series of concretes containing Class C 
and Class F fly ashes and 3 series of control mixtures were produced in order to investigate the compressive strength 
properties of concretes. After that, the mixtures containing Class F and Class C fly ashes which had similar compressive 
strength values to the control mixtures at age of 28 d for each series were used for sulfate resistance tests. However, 
the selected mixtures for sulfate resistance tests determined from two results had similar compressive strength values 
to the control mixtures at age of 28 d for each cement content and fly ash type. One of them was the mixture had 10% 
or 17% cement replacement rate (reduced cement from the control concretes) and the other one was the mixture had 
fly ash was added and this situation caused an increase in binder content (depending on cement reduction ratio). 
 

Table 2. Mix proportioning of Class F type fly ash additive concretes. Source:  Own elaboration. 

Class F fly ash 

Mix. 
No Concrete Type 

Cement 
(kg/m3) 

Remove 
(%) 

Fly Ash 
(kg/m3) 

Added 
(%) 

Water 
(kg) 

Air Content 
(%) 

Slump 
(cm) 

M1 C260F0 (%0K0) 260 - - - 199 2.0 15.5 

M2C C234F26 (%10K1) 234 10 26 10.0 197 2.2 14.0 

M3C C234F39 (%10K1,5) 234 10 39 15.0 195 2.1 16.0 

M4C C234F52 (%10K2) 234 10 52 20.0 196 1.9 15.5 
M5C C216F44 (%17K1) 216 17 44 17.0 196 2.4 15.5 
M6C C216F66 (%17K1,5) 216 17 66 25.5 196 1.7 14.0 
M7C C216F88 (%17K2) 216 17 88 34.0 197 2.0 14.0 
M8 C320F0 (%0K0) 320 - - - 205 2.3 15.5 
M9C C288F32 (%10K1) 288 10 32 10.0 186 1.6 15.5 
M10C C288F48 (%10K1,5) 288 10 48 15.0 192 1.6 15.0 

M11C C288F64 (%10K2) 288 10 64 20.0 201 1.8 14.5 

M12C C266F54 (%17K1) 266 17 54 17.0 196 1.9 14.5 
M13C C266F81 (%17K1,5) 266 17 81 25.5 201 2.1 16.0 
M14C C266F108 (%17K2) 266 17 108 34.0 203 2.0 16.0 
M15 C400F0 (%0K0) 400 - - - 172 3.0 15.0 
M16C C360F40 (%10K1) 360 10 40 10.0 160 2.5 17.0 
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M17C C360F60 (%10K1,5) 360 10 60 15.0 162 2.7 17.0 
M18C C360F80 (%10K2) 360 10 80 20.0 170 2.2 17.0 
M19C C332F68 (%17K1) 332 17 68 17.0 165 2.4 16.0 
M20C C332F102(%17K1,5) 332 17 102 25.5 164 2.4 17.0 
M21C C332F136 (%17K2) 332 17 136 34.0 180 3.0 15.5 

 
 

Table 3. Mix proportioning of Class C type fly ash additive concretes. Source: Own elaboration.  

Class C fly ash 

Mix. 
No 

Concrete Type Cement 
(kg/m3) 

Remove 
(%) 

Fly Ash 
(kg/m3) 

Added 
(%) 

Water 
(kg) 

Air Content 
(%) 

Slump 
(cm) 

M1 C260C0 (%0K0) 260 - - - 199 2.0 15.5 
M2F C234C26 (%10K1) 234 10 26 10.0 180 2.4 14.5 
M3F C234C39 (%10K1,5) 234 10 39 15.0 188 2.0 14.5 
M4F C234C52 (%10K2) 234 10 52 20.0 187 2.1 15.5 
M5F C216C44 (%17K1) 216 17 44 17.0 188 2.2 14.0 
M6F C216C66 (%17K1,5) 216 17 66 25.5 188 1.9 15.0 
M7F C216C88 (%17K2) 216 17 88 34.0 177 2.0 15.0 
M8 C320C0 (%0K0) 320 - - - 205 2.3 15.5 
M9F C288C32 (%10K1) 288 10 32 10.0 194 1.8 15.5 
M10F C288C48 (%10K1,5) 288 10 48 15.0 192 2.2 16.5 
M11F C288C64 (%10K2) 288 10 64 20.0 182 1.8 15.0 

M12F C266C54 (%17K1) 266 17 54 17.0 185 1.9 14.5 
M13F C266C81 (%17K1,5) 266 17 81 25.5 187 2.1 17.0 
M14F C266C108 (%17K2) 266 17 108 34.0 193 2.0 17.0 
M15 C400C0 (%0K0) 400 - - - 172 3.0 15.0 
M16F C360C40 (%10K1) 360 10 40 10.0 168 2.5 16.0 
M17F C360C60 (%10K1,5) 360 10 60 15.0 175 2.3 15.0 
M18F C360C80 (%10K2) 360 10 80 20.0 166 2.2 15.5 
M19F C332C68 (%17K1) 332 17 68 17.0 161 2.4 16.0 
M20F C332C102(%17K1,5) 332 17 102 25.5 174 2.4 14.0 
M21F C332C136 (%17K2) 332 17 136 34.0 161 3.0 17.0 

 
 
Casting, testing and curing 
 
Compressive strength test was made on 150 mm cube specimens. All specimens were demoulded in a controlled 
chamber at 20 ± 2 oC after 1 d of casting, and cured in lime-saturated water at 20 oC and 65% RH. Compressive 
strength test was performed at 28 and 90 d. Specimens of concrete with dimensions of 70x70x280 mm were used for 
sulfate resistance tests. The average of test results was adopted from three identical samples, for all the results. For 
sulfate resistance tests, the specimens were left in the mould for 24 h and then they were water cured for 28 d.  After 
the 28 d initial curing, half of the specimens were placed in a solution of 15 % magnesium sulfate, and the rest of the 
specimens were placed in tap water in order to investigate the influence of the sulfate attack on the samples. The 
sulfate exposure testing procedure was conducted by immersing concrete specimens after the specified initial curing 
in a water tank containing 15 % magnesium sulfate solution at 23±2 °C according to ASTM C1012-04 standard (ASTM C 
1012, 2002). Sulfate solutions used for the immersion tests were renewed every 4 weeks to minimize the increase in 
pH due to the leaching of OH- ions from the concrete specimens. Sulfate concentrations were kept relatively high to 
accelerate deterioration and also in order to compensate for small variations in concentration during the tests. A 
propeller was placed in the basin in order to secure a good circulation of the solution around the specimens. Before 
placing the prism specimens in the MgSO4 solution, their lengths were measured using a high-accuracy digital length 
comparator. Expansion data are presented as differences between the length changes observed in magnesium sulfate 
solution and those in tap water. Weight change is also presented as differences between the weight changes observed 
in magnesium sulfate solution and those in tap water. Every month, the length and weight of each sample were 
measured at about 20 oC. Their weights were recorded, after surface-drying the samples with a cloth, using a technical 
balance with a sensitivity of 0.001 g. Their length was measured with a digital comparator with a precision of 0.001 
mm.  
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Results and discussion 
 
Compressive strength  
 
Table 4 presents the variation of compressive strength with age for various fly ash percentages of all 39 mixtures at 
ages of 28 d and 90 d, respectively. The test results show that the use of Class C fly ash improves the workability of 
concretes slightly and reduces the water requirement of the concretes when compared to Class F fly ash. Because, 
Class C fly ash particles had spherical shape. At age of 28 d, the compressive strength of Class C fly ash additive 
concretes including different amounts of fly ash can be seen to be generally higher than that of control concretes. This 
is especially evident in the C266C108 and C288C48 mixtures, where compressive strength reached 51.2 and 50.9 MPa, 
respectively and those mixtures had higher values than that of the control mixture (47.8 MPa). Moreover, the long 
term strength as detected at age of 90 d, the compressive strength development of Class C fly ash additive mixtures 
was also found to have higher strength values than the control mixtures. In the C266C108 cubic mixture compressive 
strength reached 59.8 MPa significantly higher than that of the control mixture, 54.9 MPa. For Class F fly ash, fly ash 
additive concrete mixtures including different amounts of Class F fly ash exhibited generally lower compressive 
strength than that of the control concretes at ages of 28 d and 90 d. The compressive strengths of the Class F fly ash 
mixtures decreased when the amount of fly ash was increased. From the test results, it can be seen that the use of 
Class C fly ash instead of Class F with the same cement dosage and fly ash percentage generally caused to higher 
compressive strength. As Class C fly ash, contains higher calcium amount, the compressive strength results are higher 
in early ages compared to Class F fly ash. 10% cement reduction by adding Class C fly ash improves compressive 
strength and this improvement increases with fly ash percentage. When cement is reduced by 17%, Class C and Class F 
fly ash additive specimens show similar behavior; compressive strength decreases with decreasing of the cement 
dosage and increases with adding fly ash when cement dosage is constant. Generally, the addition of Class C fly ash 
increased compressive strength of concrete mixtures. The slight improvement of the compressive strength obtained 
probably due to pozzolanic reaction. Since fly ash is a pozzolanic, the addition of fly ash should also increase concrete 
strength through the pozzolanic reaction. Fly ash is pozzolanic, meaning it reacts with calcium hydroxide and water to 
form compound with cementing properties. The two products of cement hydration are calcium silicate hydrate (C–S–
H) and calcium hydroxide (CH), and of the two products, C–S–H is the major contributor to concrete strength. 
Supplementary cementitious materials such as fly ash contains amorphous silica (S) which reacts with calcium 
hydroxide (CH) to form additional C–S–H thereby improving strength (Hale, Freyne, Bush Jr, & Russell, 2008). 
 

Table 4. Compressive strength test results of the concretes containing Class C and Class F fly ashes. Source: Own elaboration.  

Mix. 
No 

Class C fly ash in concrete 

Mix. 
No 

Class F fly ash in concrete 

Concrete 
Type 

Compressive 
Strength 
(N/mm2) 

Compressive 
Strength 
(N/mm2) Concrete 

Type 

Compressive 
Strength 
(N/mm2) 

Compressive 
Strength 
(N/mm2) 

28 d 90 d 28 d 90 d 

M1 C260 40.20 46.20 M1 C260 40.20 46.20 
M2C C234C26 40.50 47.00 M2F C234F26 38.75 44.45 
M3C C234C39 41.32 49.53 M3F C234F39 40.25 47.87 
M4C C234C52 42.54 50.16 M4F C234F52 39.25 46.93 
M5C C216C44 38.71 45.27 M5F C216F44 36.49 44.55 
M6C C216C66 39.86 46.40 M6F C216F66 38.14 46.21 
M7C C216C88 41.27 48.75 M7F C216F88 40.06 48.39 
M8 C320 47.80 54.87 M8 C320 47.81 54.87 
M9C C288C32 48.62 55.99 M9F C288F32 46.81 55.02 
M10C C288C48 50.85 57.56 M10F C288F48 47.93 57.31 
M11C C288C64 50.55 56.95 M11F C288F64 46.69 54.76 
M12C C266C54 48.26 55.57 M12F C266F54 45.90 52.33 
M13C C266C81 50.54 57.43 M13F C266F81 46.23 53.95 
M14C C266C108 51.22 59.84 M14F C266F108 47.52 55.76 
M15 C400 60.53 72.33 M15 C400 60.53 72.33 

M16C C360C40 57.90 68.96 M16F C360F40 57.76 71.65 

M17C C360C60 60.88 72.88 M17F C360F60 61.10 75.06 
M18C C360C80 63.26 73.84 M18F C360F80 63.31 73.42 
M19C C332C68 58.87 68.65 M19F C332F68 55.27 69.79 

M20C C332C102 60.19 72.06 M20F C332F102 58.44 71.72 

M21C C332C136 62.91 73.15 M21F C332F136 61.12 74.94 
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The quantities of Class F fly ash in the concrete mixtures each did not play a great role in the compressive strength 
properties. However, the effects of Class F fly ash on the mechanical properties of the concrete did not vary much 
from the findings of the previous researchers (Papadakis, 1999). Many previous studies have also shown that, at any 
percentage, the replacement of Portland cement with fly ash in concrete on a one-for-one basis, either by volume or 
by weight, results in lower compressive strength up to about 3 months of curing, with the development of greater 
strengths beyond 6 months (Berry, & Malhotra, 1980). Bloem (1954) stated that after a slowing of the early rate of 
strength contribution by Portland cement, the continued pozzolanic activity of fly ash contributes to increased 
strength gains at greater ages if the concrete is kept moist. Fraay, Bijen, & De Haan (1989) explained this 
phenomenon, stating that the glass material in fly ash is broken down only when the pH value of the pore water is at 
least 13.2, and the increase in the alkalinity of the pore water requires that a certain amount of hydration of the 
Portland cement in the mix has taken place. Therefore, the pozzolanic reaction of Class F fly ash does not begin until a 
couple of months. In this study, Class F fly ash specimens were not cured in water to understand after 90 d for 
compressive strength properties of Class F fly ash. So, the test results indicate until that time period. 
 
Resistance to sulfate attack  
 
Linear expansion and weight loss 
 
Expansion and weight have been monitored in order to understand the main mechanisms of degradation. The results 
on the effects of magnesium sulfate solution in high concentration and the addition of Class C and Class F fly ashes on 
the expansion of concrete specimens are shown in Figures 2-4, respectively. Linear expansion values were compared 
with respect to the Class C and Class F additive specimens had similar compressive strength values to control 
concretes for each series in which the specimens were immersed. The expansion of the concrete prisms stored in the 
magnesium sulfate solutions was measured at predetermined times of exposure up to one year. It is clearly evident 
that the expansion of the control concrete prisms is much larger than those the concretes made with the Class C and 
Class F fly ashes for each series. The concretes containing Class C and Class F fly ashes showed a ‘‘linear’’ pattern of 
expansion throughout one-year period in magnesium sulfate solution. 
 

Figure 2. Expansion of concrete prisms exposed to 15 % magnesium sulfate solution for C260 series. Source: Own elaboration.  

 
 

Figure 3. Expansion of concrete prisms exposed to 15% magnesium sulfate solution for C320 series. Source: Own elaboration.   
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Figure 4. Expansion of concrete prisms exposed to 15 % magnesium 
sulfate solution for C400 series. Source: Own elaboration.   

 
 

Figure 5. Weight change of concrete prisms exposed to 15 % magnesium 
sulfate solution for C260 series. Source:  Own elaboration.  

 
 
The expansion values were in the range of 0.03% - 0.69% through one-year immersion period for C260 series. C216F88 
mixture had the lowest expansion and the control mixture had the highest one. In terms of expansion, the concretes 
containing Class C and Class F fly ashes exhibited expansion in the range of 0.06% - 0.92% for C320 series. C266F108 
mixture had the lowest expansion and the control mixture also had the highest one. For C400 series, the concretes 
containing Class C and Class F fly ashes mixtures showed expansion values in the range of 0.07% - 1.2% and the lowest 
sulfate expansion value was achieved by prism of the concrete extracted from the C332F136 mixture and the highest 
sulfate expansion value obtained from the control mixture. The test results indicated that in higher level of addition of 
Class C and Class F fly ashes mixtures, less linear expansion occurred in magnesium sulfate solution for each series. In 
other words, the higher level of addition of Class C and Class F fly ashes, proved particularly beneficial in terms of 
expansion. When similar compressive strength values taking into account for each series, Class F type fly ash 
performed better than Class C type fly ash as expansion. ACI Committee 232 recognizes that the use of low-calcium fly 
ash should significantly decrease sulfate expansion (ACI Committee 232, 1996). In summary, it was found that the 
concrete specimens exposed to this high concentration of magnesium sulfate solution showed significant increase in 
expansion values. 
 
When cement amount was increased it can be seen that the expansion values also increased. Control concretes 
produce comparatively greater amounts of portlandite (Ca(OH)2) on hydration than Class C and Class F fly ashes 
additive concretes. Leaching of portlandite can thus increase ingress of sulfate ions in cement matrix. Moreover, 
reaction with sulfate is likely to produce more gypsum (CaSO4) and more ettringite (C3A.3CaSO4.32H2O), which are 
responsible for more expansion (Fraay, Bijen, & De Haan, 1989; Rozière, Loukili, El Hachem, & Grondin, 2009). 
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Essentially, two forms of sulfate attack are known to exist: (1) reaction with alumina-bearing hydration products, 
and/or unhydrated tricalcium aluminate (C3A) to produce ettringite; and (2) reaction with calcium hydroxide to 
produce gypsum. In hardened concrete, the formation of ettringite by sulfate attack can, but does not always, result in 
expansion. Because of concrete’s low tensile strength, expansive strains resulting from ettringite formation during 
sulfate attack can lead to cracking and reduced performance. Gypsum, in addition to ettringite, can be produced 
during sulfate attack through cation exchange reactions. Sulfate attack through gypsum formation can result in 
smaller expansion, but is more generally known to manifest itself through loss of stiffness, strength, and adhesion 
(Monteiro, & Kurtis, (2003). Previous studies suggest that gypsum formation during sulfate attack is expansive (Tian, & 
Cohen, 2000; Santhanam, Cohen, & Olek 2002), but ettringite might form afterwards, contributing to expansion. 
 
In addition to the formation of ettringite and gypsum and its subsequent expansion, the deterioration due to sulfate 
attack is partially caused by the degradation of calcium silicate hydrate (C–S–H) gel through leaching of the calcium 
compounds. This process leads to loss of C–S–H gel stiffness and overall deterioration of the cement paste matrix 
(Mehta, 1983). Expansion and cracking are generally attributed to expansive forces generated by sulfate reacting with 
the calcium aluminium hydrates to form ettringite and loss of weight and strength are generally attributed to 
reactions where sulfate attacks and breaks down the calcium silicate hydrate (C–S–H), which is the main binding 
component of hardened cement (Higgins, 2003). In a comprehensive review on the sulfate attack, Bonen and Cohen 
(1992a) and Bonen, & Cohen (1992b) conducted microstructural analyses on Portland cement paste exposed to 
magnesium sulfate solution for 1 year. They observed the formation of a “surface double-layer” that was composed of 
brucite and gypsum layers and a sequential formation of inner layers of gypsum, similar to the occurrence of lisegang 
bands. Ettringite and monosulfate were only found in minor amounts. Mehta (1993) pointed out that, in most cases, 
the loss of adhesion and strength, not expansion and cracking, is the primary manifestation of sulfate attack. 
 
The weight loss of various concrete specimens exposed to magnesium sulfate solution with immersion period is 
presented in Figures 5-7. Every month, the weight of each sample was measured at about 20 oC. There was a 
continuously mass increase for all the concretes with exposure age. The rate of mass increase of concrete decreases 
when increasing the replacement level of Class C and Class F fly ashes. So, the least mass increase was found in the 
mixtures containing higher level of Class C and Class F fly ashes. The weight changes of the specimens were in the 
range of 0.09% - 0.80% through one-year immersion period for C260 series. For C320 series, the Class C and Class F fly 
ashes additive concretes showed weight change values in the range of 0.34% - 1.71%. In terms of weight change, the 
Class C and Class F fly ashes additive concretes exhibited weight change in the range of  0.09% - 0.80% for C400 series. 
When cement amount was increased it can be seen that the weight change values also decreased and control 
concretes had higher weight change values compared with the specimens containing Class C and Class F fly ashes for 
each series. The test results indicated that all the specimens showed mass increase through one-year immersion 
period. The mass increase is due to swelling caused by gypsum and/or ettringite formation in damaged concrete 
specimens (Rozière, Loukili, El Hachem, & Grondin, 2009). Furthermore, this phenomenon is attributable to the filling 
up of pores by the expansive reaction products, thereby densifying the hardened concrete mixtures and increasing the 
weight (Lee, 2009). Additionally, the general increase of weight was the result of continuous water absorption, slowly 
compensating for the chemical shrinkage due to the hydration of the cement (Persson, 2003). So, it is obvious that the 
use of weight change to predict the sulfate resistance is not an accurate method. 
 

Figure 6. Weight change of concrete prisms exposed to 15 % magnesium 
sulfate solution for C320 series. Source:  Own elaboration.  
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Figure 7. Weight change of concrete prisms exposed to 15 % magnesium 

sulfate solution for C400 series. Source: Own elaboration   

 
 
 

Artificial neural network model for prediction of experimental results 
 
ANN can exhibit a surprising number of human brain characteristics (Öztaş, Pala, Özbay, Kanca, Caglar, & Bhatti, 2006; 
Demir, Topçu, & Kuşan, 2011). The fundamental concept of neural networks is the structure of the information 
processing system (Adhikary, & Mutsuyoshi, 2004; Saridemir, 2009). They are consisting of a large number of simple 
processing elements called as neurons. The neurons are used in ANN. These neurons are connected with connection 
link. Each link has a weight that is multiplied by transmitted signal in network. Each neuron has an activation function 
to determine the output. There are many kinds of activation functions. Usually nonlinear activation functions such as 
sigmoid, step are used. ANNs are trained by experience, when an unknown input is applied to the network it can 
generalize from past experiences and produce a new result (Hanbay, Turkoglu, & Demir, 2008a; Haykin, 1994; Hanbay, 
Turkoglu, & Demir, 2008b; Bilim, Atiş, & Tanyildizi, Karahan, 2009). 
 






m

0j

jj
bwxu  and  V = f (u)                     (1) 

 
Artificial neural networks are systems that are deliberately tended to make use of some organizational principles 
resembling those of the human brain (Hanbay, Turkoglu, & Demir, 2008a; Haykin, 1994; Hanbay, Turkoglu, & Demir, 
2008b; Bilim, Atiş, & Tanyildizi, Karahan, 2009). They represent the promising new generation of information 
processing systems. 
 
When designing an ANN model, a number of considerations must be taken into account. At first the suitable structure 
of the ANN model must be chosen. Then, the activation function needs to be determined. The number of layers and 
the number of units in each layer must be chosen. Generally desired model consists of a number of layers. The most 
general model assumes complete interconnections between all units. These connections can be bidirectional or 
unidirectional. ANN can create its own organization or representation of the information it receives during learning 
time (Hanbay, Turkoglu, & Demir, 2008a; Haykin, 1994; Hanbay, Turkoglu, & Demir, 2008b; Bilim, Atiş, & Tanyildizi, 
Karahan, 2009). 
 
In this study, the problem is proposed to network models by means of eight input and two output parameters. The 
parameters such as amount of cement, amount of fly ash, amount of binder, amount of sand, amount of type I 
aggregate, amount of type II aggregate, amount of water, curing period were selected as input variables. The model 
output variables were the weight and length changes of the concrete exposed to sulfate. Data sets including 180 data 
samples obtained from experimental studies were used for artificial neural networks. The data were normalized by 
dividing with max values. ANN architecture used for this study is given in Figure 8.  
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Figure 8. ANN architecture. Source: Own elaboration. 

 
 
 
 
The all algorithms of ANN were used for this study but the BFGS quasi-Newton backpropagation, Fletcher-Powell 
conjugate gradient backpropagation, Polak-Ribiere conjugate gradient backpropagation, Gradient descent with 
adaptive lr backpropagation, Gradient descent w/momentum & adaptive lr backpropagation, Levenberg-Marquardt 
backpropagation, One step secant backpropagation, Random order incremental training w/learning functions, Scaled 
conjugate gradient backpropagation were just learning. The computer program was performed under MATLAB 
software using the neural network toolbox. In the training, the number of neuron on the hidden layer changed to find 
best results. The best result for BFGS quasi-Newton backpropagation algorithm was obtained from the fifteen 
neurons. The best result for Fletcher-Powell conjugate gradient backpropagation was obtained from the fourteen 
neurons. The best result for Polak-Ribiere conjugate gradient backpropagation was obtained from the sixteen 
neurons. The best result for Gradient descent with adaptive lr backpropagation was obtained from the eighteen 
neurons. The best result for Gradient descent w/momentum & adaptive lr backpropagation was obtained from the 
eighteen neurons. The best result for Levenberg-Marquardt backpropagation was obtained from the six neurons. The 
best result for One step secant backpropagation was obtained from the sixteen neurons. The best result for Random 
order incremental training w/learning functions was obtained from the sixteen neurons. The best result for Scaled 
conjugate gradient backpropagation was obtained from the nine neurons. A data set including 180 data samples 
obtained from experimental studies were used for artificial neural networks. From these, 90 data patterns were used 
for training the network, and the remaining 90 patterns were randomly selected and used as the test data set. Figure 
9 and Figure 10 present the measured values versus predicted values by ANN model with R2 coefficients. Figure 9 and 
Figure 10 show that the best algorithm for length changes of concrete exposed to sulfate is BFGS quasi-Newton 
backpropagation algorithm with R2 of 0.9804 while the best algorithm for weight changes of concrete exposed to 
sulfate is the Levenberg-Marquardt backpropagation algorithm with R2 of 0.9746. The best results using the 
Levenberg-Marquardt backpropagation algorithm in this study are similar to Karahan et al. (2008). The training 
performance during the training process is given in Figure 11 where the variation of mean-square error with training 
epochs is illustrated. 
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Figure 9. Linear relationship between the measured and predicted length changes; a) the BFGS quasi-Newton backpropagation algorithm, b) the Fletcher-Powell 
conjugate gradient backpropagation algorithm, c) the Polak-Ribiere conjugate gradient backpropagation algorithm, d) the Gradient descent with adaptive lr 
backpropagation algorithm, e) the Gradient descent w/momentum & adaptive lr backpropagation algorithm, f) the Levenberg-Marquardt backpropagation algorithm, g) 
the One step secant backpropagation algorithm, h) the Random order incremental training w/learning functions algorithm, i) the Scaled conjugate gradient 
backpropagation algorithm. Source:Own elaboration. 
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Figure 10. Linear relationship between the measured and predicted weight changes; a) for the BFGS quasi-Newton backpropagation algorithm, b) the Fletcher-Powell 
conjugate gradient backpropagation algorithm, c) the Polak-Ribiere conjugate gradient backpropagation algorithm, d) the Gradient descent with adaptive lr 
backpropagation algorithm, e) the Gradient descent w/momentum & adaptive lr backpropagation algorithm, f) the Levenberg-Marquardt backpropagation algorithm, g) 
the One step secant backpropagation algorithm, h) the Random order incremental training w/learning functions algorithm, i) the Scaled conjugate gradient 
backpropagation algorithm. Source: Own elaboration.  
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Figure 11. Training performance a) BFGS quasi-Newton backpropagation algorithm, b) Fletcher-Powell conjugate gradient backpropagation algorithm, c) the Polak-
Ribiere conjugate gradient backpropagation algorithm, d) the Gradient descent with adaptive lr backpropagation algorithm, e) Gradient descent w/momentum & 
adaptive lr backpropagation algorithm, f) Levenberg-Marquardt backpropagation algorithm, g) One step secant backpropagation algorithm, h) Random order 
incremental training w/learning functions algorithm, j) Scaled conjugate gradient backpropagation algorithm. Source:Own elaboration. 
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Conclusions 
 
Laboratory tests were performed to determine the deterioration induced by the magnesium sulfate on the control 
and Class C and Class F type fly ashes additive concretes. The results of the tests are as follows: 

 The use of Class C type fly ash instead of Class F type fly ash with the same cement dosage and fly ash percentage 
generally caused to higher compressive strength.  

 The expansion values were in the range of % 0.03 - % 1.2 through one-year immersion period for C260, C320 and 
C400 series. The test results indicated that in higher level addition of Class C and Class F fly ashes mixtures, less 
linear expansion occurred in magnesium sulfate solution for each series. When cement amount was increased, 
the weight change values also decreased and control concretes had higher weight change values compared with 
the specimens containing Class C and Class F fly ashes for each series. All the specimens showed mass increase 
through one-year immersion period. 
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 Experimental results showed that ANN has been used for the prediction of length changes of concrete exposed 
to sulfate. The neural networks-based model gave high prediction accuracy and correlation. The best algorithm 
for length changes of concrete exposed to sulfate is BFGS quasi-Newton backpropagation algorithm with R2 of 
0.9804 while the best algorithm for weight changes of concrete exposed to sulfate is the Levenberg-Marquardt 
backpropagation algorithm with R2 of 0.9746. Therefore, it is possible to predict length changes of concrete 
exposed to sulfate using artificial neural networks. 
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