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Abstract: This study aims to introduce an earthquake-induced damage classification approach for seismic vulnerability 

assessment of reinforced concrete buildings. Through the use of the damage data collected from post-earthquake inspec-

tions after the 2003 Bingöl Earthquake in Turkey, two models were constructed by the decision tree classification technique 

considering nine building-specific features as the estimation variables in the analysis. The first model was developed for 

the prediction of the observed damage states of the buildings, whereas the second one concerning the life safety level 

assessment, was proposed for distinguishing the extremely vulnerable buildings for seismic prioritization. In the validation 

process, the leave-one-out cross validation technique was adopted to deal with the small sample size of the building inven-

tory. Among the estimation variables, the priority index and the existence of short columns were found to have the highest 

importance in classification. Results have revealed that the proposed model for life safety level assessment was capable of 

discriminating the cluster of severely damaged and collapsed buildings from the entire database with an accuracy of 

70.59%. Hence, the damage classification approach adopted in this study has the potential for improving effective tools 

for seismic risk assessment of the existing buildings. 
 

Keywords: seismic vulnerability assessment, decision trees, reinforced concrete buildings, earthquake damage estimation, 

seismic risk prioritization. 
 

 

1. Introduction 

 

In recent decades, seismic prone countries have suffered severe damage from strong earthquakes leading to considerable 

economic and social impacts on the communities (Kocaeli,1999; L’Aquila, 2009; Haiti, 2010; Chile 2010; Gorkha, 2015, 

etc.). Such devastating earthquakes threatening millions of people underlined the demand for well-organized pre-earthquake 

activities for the seismic risk evaluation of large numbers of buildings. Thus, the major issue of concern for large-scale seismic 

evaluation activities is to introduce viable schemes to rank and prioritize the most vulnerable set of buildings that require 

immediate intervention for detailed seismic evaluation (Yıldızlar, Akcay & Öztorun, 2018). 

 

Over the past decades, great efforts have been devoted to improve seismic vulnerability assessment procedures for the built 

environment through a variety of analytical and statistical approaches. The analytical procedures in the literature involve 

comprehensive numerical models to quantify the seismic risk of the buildings considering the seismic demand and capacity 

of the structures which require detailed physical information. Among the regional risk assessment tools, HAZUS (2012), 

ELER (2010) and SELENA (2010) offer standardized methodologies to estimate the probable damage state of a building by 
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means of fragility curves derived for generic building types at a certain level of seismic action. Along with these procedures, 

macroseismic methods consider an intensity based vulnerability assessment to estimate the damage grade of the buildings 

owing to the statistical analysis of a variety of data sets acquired during post-earthquake inspections conducted on the damaged 

buildings (Grünthal, 1998; Lagomarsino & Giovinazzi, 2006). 

 

The macroseismic methods mainly rely on the evaluation of seismic vulnerability concerning the constructive features and 

the building typology at a particular seismic intensity expressed through the macroseismic scales in EMS-98 (Grünthal, 1998). 

The evaluation procedure was originally introduced by Lagomarsino & Giovinazzi (2006) employing the classical probability 

and the fuzzy-set theory to correlate the seismic performance of building typologies with the vulnerability classes with refer-

ence to the definitions given in the European Macroseismic Scale (Grünthal, 1998). Taking advantage of the probabilistic 

aspects of the macroseismic methods, the philosophy behind the empirical approach has also enabled elaborations in the 

methodology through the use of post-earthquake damage data gathered from the buildings. In line with this, researchers em-

ployed on-site observations from post-earthquake field surveys in order to modify the existing seismic vulnerability evaluation 

procedures for different building typologies (Tomás, Ródenas & García-Ayllón, 2017; Rapone, Brando, Spacone & De 

Matteis, 2018; Ródenas, García-Ayllón & Tomás, 2018).  

 

Wide set of post-earthquake data gathered through building damage surveys provides a valuable information for calibration 

of vulnerability assessment procedures which enable evaluation of building aggregates and prioritization of the buildings that 

require further assessment. Thus, well-organized post-earthquake field studies enable refinements in the existing empirical 

methods and also, constructing predictive statistical models for vulnerability assessment using the reliable damage data col-

lected from on-site observations. Along these lines, several methods were formerly introduced for the seismic risk evaluation 

of reinforced concrete buildings utilizing a variety of statistical techniques as multiple linear regression and discriminant 

analysis in order to correlate the observed damage state with the inspected structural properties of the building (Yücemen, 

Özcebe & Pay, 2004; Sucuoğlu, Yazgan & Yakut, 2007; Jain et al., 2010; Özhendekci & Özhendekci, 2012). Apart from the 

schemes improved by regression models, attempts have also been made to introduce the preliminary evaluation methods 

implementing fuzzy rule based systems (Demartinos & Dritsos, 2006; Tesfamariam & Saatcioglu ,2008; Şen, 2010; Tesfama-

riam & Saatcioglu, 2010; Harirchian & Lahmer, 2020). Due to the fact that the actions taken during the screening process 

require subjective views of the surveyor, in these methods, the decisions about the seismic risk level of the building in the 

preliminary stage are made through the execution of a set of fuzzy rules defining the linguistic expert information and the 

numerical data related to the structural properties. 

 

With the same purpose to improve efficient methods for pre-earthquake evaluation of the buildings, previous research in 

the literature also focused on the application of the statistical learning techniques to predict the potential damage to the build-

ings from the post-earthquake damage data. Among these studies, Tesfamariam & Liu (2010) utilized different classification 

algorithms to categorize the seismic induced damage data and discussed the effectiveness of the damage classification com-

paring the performance of the alternative approaches. Also, Mangalathu, Sun, Nweke, Yi & Burton, (2020) investigated the 

performance of discriminant analysis, k-nearest neighbour, decision tree and random forest algorithms using the post-earth-

quake inspection of the buildings where damage was characterized through the discrete categories prescribed in ATC-20 

(1995). The results of this study revealed that random forest-based model performed better in damage prediction achieving a 

comparatively higher accuracy than the other techniques. Furthermore, among the learning-based methods, support vector 

machine was also addressed as an efficient technique in damage classification problems where the main concern is to improve 

efficient methods for vulnerability assessment of existing buildings (Harirchian et al., 2020, Harirchian, Lahmer, Kumari & 

Jadhav, 2020).  

 

An overview of the literature reveals, great efforts are being devoted to improve pre-earthquake assessment methodologies 

through the implementation of statistical techniques to derive efficient models using the observed damage states and the 

structural properties gathered through post-earthquake damage inspections of the buildings. Yet, there exists a research gap 

in refining the existing methodologies and minimizing the uncertainties in the predictive models that arise from the damage 

data gathered during inspections.  
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With this motivation, this study aims to introduce a pre-earthquake evaluation scheme to predict the potential damage state 

and seismic vulnerability of the buildings using the damage data collected from post-earthquake on-site observations. To this 

aim, decision tree-based learning approach has been adopted to generate prediction models using the observed damage states 

as the response variables and the inspected building parameters as the estimation variables of the classification problem. The 

damage data used in the analysis consist of 85 reinforced concrete buildings which have been derived from the plan views 

and the information gathered from the damaged buildings during the field surveys conducted after 2003 Bingöl Earthquake 

in Turkey (Mw=6.4). Building-specific features utilized as the estimation variables were total floor area (AT), number of 

stories (N), priority index (PI), normalized lateral stiffness index (NSTFI), normalized redundancy ratio (NRR), existence of 

short columns (SH), overhang ratio (OR), pounding effect (PE) and soft story irregularity (SSI).  To overcome the limitations 

regarding the small sample size of the building inventory, a leave-one-out cross validation was adopted in the validation 

process. With the implementation of the decision tree-based evaluation schemes, the performance of the proposed models was 

discussed addressing their effectiveness and capabilities to filter out the vulnerable set of buildings having the highest priory 

for detailed seismic evaluation. 

 

2. Methodology 

 

2.1. Description of the building damage dataset and estimation variables 

 

The building dataset used in this study was generated by the collaboration of the reconnaissance teams from Middle East 

Technical University and Purdue University, responsible of conducting detailed post-earthquake inspections on the damaged 

buildings after 2003 Bingöl Earthquake (Mw=6.4) that occurred in the eastern part of Turkey (Özcebe, Ramirez, Wasti & 

Yakut, 2004; Sim et al., 2016). As summarized in Table 1, the building damage was defined in five discrete categories as 

none (N), low (L), moderate (M), severe (S) and collapse (C) damage levels, considering the observed damage patterns on 

the structural and the nonstructural members; and the overall integrity of the structural system. The damage data consisting 

of 85 reinforced concrete buildings has been compiled from the building surveys and the floor plans acquired from the data-

base generated by the reconnaissance teams.  

 

Table 1. Definition of building damage states. 

Damage State Description 

None (N) No observable damage 

Low (L) Hairline cracks on structural members or infill walls 

Moderate (M) Spalling of concrete, cracking of infill walls and joints, extensive flaking of plaster 

Severe (S) Localized failure in the structural system, wide and deep cracks on walls 

Collapse (C) Partial or complete collapse of the building, crushing and out-of-plane toppling of walls 

 

As observed from the damage patterns inspected during the post-earthquake investigations, irregular configuration of the 

structural system, poor detailing and construction quality were specified as the main features that affected the overall perfor-

mance of mid-rise reinforced concrete buildings (Yücemen, Özcebe & Pay, 2004). In this study, the prediction variables 

utilized as the input parameters in the classification model were determined by taking into account the effects of the total floor 

area and the number of stories above the ground level, the lateral strength and stiffness of the building, redundancy of the 

structural system as well as the building features concerning the existence of short columns, heavy overhangs, pounding effect 

and the soft story irregularity. With this regard, based on the comprehensive post-earthquake investigations and the observa-

tions on the typical damage patterns and the structural weaknesses of the buildings, nine input parameters were selected as 

the basic estimation variables to be included in the prediction models. The description of the selected variables is presented 

in Table 2. 
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Table 2. Description of the estimation variables. 

Estimation variable Description 

AT Total plan area 

N Number of stories 

SSI Soft story index 

OR Overhang ratio 

NRR Normalized redundancy ratio 

NSTFI Normalized lateral stiffness 

PI Priority index 

SC Existence of short columns 

PE Existence of pounding effect 

 

Among the estimation variables described in Table 2., normalized redundancy ratio (NRR), normalized lateral stiffness 

index (NSTFI) were formerly introduced by Yücemen, Özcebe & Pay (2004) as the damage modifiers to be used in the 

statistical models developed for the seismic vulnerability evaluation of mid-rise reinforced concrete buildings. NSTFI was 

defined as a measure of lateral stiffness of the building estimated by the summation of moments of inertia values of the 

columns and structural walls normalized with the total floor area. The post-earthquake building inspections revealed that the 

continuity of the frame members played a major role in the redistribution of earthquake-induced lateral forces within the entire 

structure. Hence, as a measure of structural redundancy, NRR parameter was also incorporated in the classification scheme 

and calculated using the number of continuous frames in the orthogonal directions of the structural system. 

 

Furthermore, priority index (PI), as proposed by Hassan & Sözen (1997), represents the overall lateral strength of the 

building which is obtained by normalizing the total cross-sectional area of the columns and walls with the total floor area. 

Due to the convenience of the required data for the calculation of priority index during field surveys, in previous studies, this 

index was stated as a key structural parameter to correlate with the observed damage states of the inspected buildings (Dönmez 

& Pujol, 2005). To represent the effect of soft story irregularity on seismic vulnerability, SSI is included as the classification 

variable and estimated as the ratio of heights of the first story and ground story. Moreover, overhang ratio (OR) is obtained 

as the ratio of the floor area of the first story (including the overhangs if exists) to the ground story. Apart from the aforemen-

tioned classification variables, in this study, the existence of short columns (SC) and pounding effects (PE) were also included 

in the analysis as the categorical variables of the prediction scheme. 

 

For a preliminary analysis of the estimation variables, the pairwise scatter plot and Pearson’s correlation coefficient matrix 

of the numerical variables are illustrated in Figure 1. The off-diagonal terms of the correlation matrix refer to the Pearson's 

bivariate correlations among estimation variables used in this study. Regarding the histograms of estimation variables, the 

distribution of the data for the total area (AT) was found to be skewed to left, while a right-skewed distribution was observed 

for the variable concerning the number of stories (N). Moreover, even though a weak correlation between the normalized 

lateral stiffness index (NLSTFI) and priority index (PI) was observed from Figure 1, the multicollinearity of the selected 

variables could be considered as negligible in this study. 

 

2.2. Model development 

 

As a non-parametric algorithm, decision tree has been employed for the classification of damage states of the buildings using the 

post-earthquake damage data from Bingöl Earthquake. As mentioned before, in recent studies, researchers have employed learning-

based classification techniques to improve reliable methods for seismic vulnerability assessment based on the observed damage data 

gathered from post-earthquake building surveys. Taking into account the small sample size of the building dataset, decision tree 

algorithm, being one of the most interpretable techniques, was implemented to deal with the damage classification problem in this 

study. 
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Figure 1. Distribution of the data and correlation between estimation variables. 
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Among the splitting criteria to obtain the best split at a given node of a decision tree, Gini Impurity represents the probability of 

misclassification of any sample from a subset of the data, in the case that the class label is randomly assigned regarding the distri-

bution of labels within the subset. For a given ancestor node having a subset of Xt and further divided into two subsets of XtN and 

XtM (corresponding to the descendent nodes, tN and tM, respectively), Gini Impurity is determined as: 

 

 𝐺𝐼𝑁𝐼(𝑡) = 1 − ∑ [𝑃(𝐶𝑗|𝑡)]
2𝑘

𝑗=1    (1) 

where  𝑃(𝐶𝑗|𝑡) represents the probability that a sample in subset of Xt exists in class Cj (Breiman et al., 1984). The estimation 

variable and the splitting procedure resulting with the lowest impurity measure are used for the generation of subsequent 

decision nodes in the classification tree. In order to generate a predictive model for the damage estimation for pre-earthquake 

assessment, the partitioning process is repeated recursively until the samples in the entire dataset are assigned into j categories. 

In the validation process of the constructed prediction models, a leave-one-out cross validation procedure has been utilized in 

order to overcome the limitations related to the small sample size and the imbalanced classes, especially for the collapse class 

region in the building dataset. 

 

 
Figure 2. General structure of a decision tree. 

 

As mentioned before, five discrete damage levels were assigned to the inspected buildings as none (N), low (L), moderate (M), 

severe (S) and collapse (C) depending on the observations during the post-earthquake evaluation. In this study, two different models 

were proposed with the implementation of classification tree algorithm (MathWorks, 2019). In the first model, the main concern 

was to improve a multiclass damage prediction scheme considering five damage categories as defined in the original building data-

base. On the other hand, in the second case, an attempt has been made to introduce a vulnerability estimation scheme which is 

capable of filtering out the most vulnerable set of buildings that require the highest priory for detailed structural evolution. To achieve 

this, a tree-based binary classification model has been constructed by grouping the entire set of buildings in two subsets; the first 

group consisting of observations with the damage states as none, light, moderate (N, L, M) and the latter including the observations 

classified as severe and collapse (S, C), respectively. A similar binary classification approach has also been adopted in a previous 

study conducted by Tesfamariam & Liu (2010). Thus, the predictive models in the second case were denoted as life safety (LS) level 

assessment in this study. Finally, to compare and assess the performance measures of the multiclass and binary classification, a third 

model was generated by three target classes consisting of the buildings with (i) none and light damage states (N, L), (ii) moderate 

damage state (M) and (iii) severe and collapse damage states (S, C). 

 

The tree-based variable importance of the nine damage indicators derived from the constructed models is illustrated in Figure 3. 

As expected, priority index (PI) representing the normalized lateral strength of the reinforced concrete building was ranked among 

the essential parameters in generating the decision tree rules for the damage predictions with five classes and life safety level assess-

ment. It is noteworthy to mention that priority index introduced by Hassan & Sözen (1997) was found to be strongly correlated with 

the actual damage states of the buildings as observed during the past experience from post-earthquake structural assessments. Since 

the buildings designed with proper dimensioning of the lateral load-resisting members are found to perform better under the effect 

of seismic loads, here in this study, priority index (PI) was also determined as the key parameter in classification models.  
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The categorical variable for the existence of short columns (SH) was also observed to have the highest importance in the splitting 

process while constructing the decision-tree prediction model for LS level assessment. This finding is quite reasonable for the sur-

veyed buildings in Bingöl inventory, since 61.77% of the buildings having severe and collapse damage states were observed to have 

short columns. Also, in a previous study concerning the performance of the damaged school buildings during 2003 Bingöl Earth-

quake, it was documented that the ground floors were collapsed due to the existence of short columns in some of these buildings 

(Gür et al., 2009). Thus, for the binary classification problem in this study, the short column parameter was proved to be an effective 

feature to discriminate the set of severely damaged and collapsed buildings from the entire building dataset. Moreover, compared 

with the other estimation variables, soft story index (SSI) was ranked as the least importance parameter to decide on the class region 

for both of the models concerning five damage states and the LS level assessment. 

 

 
Figure 3. Importance factors of the estimation variables. 

 
3. Results and discussion 

 

The post-earthquake damage dataset used in this study is composed of 85 reinforced concrete buildings. As mentioned before, 

each sample in the dataset contained nine parameters, which were used as the predictor variables along with the observed damage 

state of the inspected building as the response variable in damage classification. As it can be expected, regardless of the classification 

techniques implemented in the problem, the performance of the predictive models is mainly based on the number of correct and 

incorrect estimations within the entire set of observations. In this regard, the performance of the classifications was examined by 

comparing the damage estimations with the results of the post-earthquake assessment results in Table 3. As a measure of correctly 

classified observations over the entire set of building data, the accuracy results of the damage estimations acquired from the imple-

mentation of five-class, three-class and binary prediction models, were obtained as 45.88%, 58.82% and 70.59%, respectively. 

Moreover, to evaluate the ability of the learning algorithm to assign the correct class label for the respective damage state, sensitivity 

and precision results were also presented in Table 3. 

 

As mentioned previously, the binary classification model referred to as Life Safety (LS) in this study, was proposed to identify 

the most critical set of buildings that might suffer severe damage or collapse having the highest priority for detailed seismic evalua-

tion. To this end, two categories were considered for the seismic risk assessment; the first category concerning the damage states of 

none, light and moderate (N, L, M) and the second group is composed of damage severe and collapse (S, C) damage states. As 

clearly observed from the classification rates in Table 3, compared with the multiclass damage estimations encountered in this study, 

the proposed LS level assessment scheme achieved the highest accuracy as 70.59%, hence it was able to discriminate the cluster of 

most seismically prone buildings. The distribution of the buildings with respect to the actual damage states and the predicted damage 

categories considering the results of five-damage state and life safety level assessments are illustrated in Figure 4(a) and (b), respec-

tively. 
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Table 3. Performance of the proposed models for damage estimation. 

  

Damage estimation                                                      

(Five-class) 

Damage estimation                 

(Three-class) 

Life safety assessment 

(Binary) 

N L M S C N-L M S-C N-L-M S-C 

Estimations in the observed class 

(Correct - incorrect) 
6-10 6-9 7-13 20-9 0-5 20-12 5-14 25-9 36-15 24-10 

Estimations in the predicted class 
(Correct - incorrect) 

6-7 6-8 7-8 20-20 0-3 20-14 5-7 25-14 36-10 24-15 

Sensitivity (%) 38 40 35 69 0 63 26 74 71 71 

Precision (%) 46 43 47 50 0 59 42 64 78 62 

Total number of estimations   
(Correct - incorrect) 

39 - 46 50 - 35 60 - 25 

Accuracy (%) 45.88 58.82 70.59 

 

Observing the results for multiclass damage assessment, the correct estimation rate obtained by the predictive model with five-

damage states was below 50%. Also, sensitivity and precision rates regarding the five-damage state estimations revealed that the 

implemented scheme was unable to discriminate the buildings in the collapse region, while 68% of the buildings with severe damage 

could be identified correctly. Owing to the fact that the reliability of the proposed evaluation procedure strongly depends on sample 

size of the dataset, the limited number of surveyed buildings that exists in the database, especially for the uttermost levels of damage, 

is the main challenge to generate an assessment procedure with five damage states. To overcome this limitation, as an intermediate 

stage, the classification was also conducted by implementing the proposed model with three levels of damage assessment. For the 

case, the overall estimation accuracy of 58.82% has been achieved along the improvements in the results of precision and sensitivity, 

expectedly. 

 

  
(a) (b) 

Figure 4. Distribution of buildings according to the observed damage states and the predicted damage categories for (a) five-damage state 

estimations, (b) LS level estimations. 

 

Along with the results of damage estimations for the buildings, the performance receiver operating characteristic (ROC) curves 

of the classification models are also illustrated in Figure 5. ROC curve is the graphical representation of true positive and false 

positive rates plotted for all possible thresholds of classification. As a measure of the effectiveness of the classifier, the area under 

the ROC curve (AUC) represents the model’s capability in discriminating between prescribed classes. AUC score closer to unity 

indicate a higher performance in class separation, meaning that AUC score of unity corresponds to a perfect classification having 
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100% probability of detection for a particular class region. As seen in Figure 5(a), AUC scores for five-damage state assessment 

were found to be above 60%, while relatively higher scores could be achieved for the set of buildings having light and severe damage 

states as 72.2% and 69.1%, respectively. Also, for the classification scheme considering the LS level assessment, AUC score was 

calculated as 67.1% for the class region regarding the buildings with severe or collapse damage state. Taken together, with the use 

of decision tree-based classification scheme developed in this study, the model proposed for LS level assessment was able to distin-

guish the set of severely damaged and collapsed buildings among the entire post-earthquake building dataset, achieving a remarkably 

high prediction accuracy. 

 

  

(a) (b) 

Figure 5. ROC curves for (a) estimations with five-damage state model and (b) estimations concerning LS level assessment. 

 

4. Conclusions and comments 

  

Pre-earthquake seismic assessment of the existing buildings constitutes the core part of in the disaster management and 

earthquake mitigation activities, particularly for the seismic prone countries. Thus, in the last few decades, there is a growing 

interest in developing reliable techniques for the preliminary seismic risk evaluation and prioritization of the buildings that 

require further analysis for seismic hazard assessment. In regards to these efforts, to assess the seismic risk level of buildings 

at the preliminary stage, a decision tree classification approach has been adopted for generation of models to predict the 

potential damage to the buildings on the basis of the observed damage from Bingöl inventory.  

 

Nine input parameters derived from the inspected features of each sample building were selected as the basic estimation 

variables in the prediction models. These estimation variables include total floor area (AT), number of stories (N), priority 

index (PI), normalized lateral stiffness index (NSTFI), normalized redundancy ratio (NRR), existence of short columns (SH), 

overhang ratio (OR), pounding effect (PE) and soft story irregularity (SSI). The tree-based variable importance of the nine 

damage indicators were obtained and it was found that priority index (PI) representing the normalized lateral strength of the 

reinforced concrete building was the key parameter for both of the classification models. Also, the categorical variable for the 

existence of short columns (SH) was observed to have the highest importance in the splitting process for the decision-tree 

prediction model concerning LS level assessment. 

 

In classifying the buildings in five categories, the proposed multiclass model resulted with a poor performance in predicting 

the correct status of buildings in concern. Thus, the refined model concerning five damage states could not offer a robust 

method for vulnerability assessment due to the limitations of small sample size of the database, still can be improved by 

further elaborations with different databases.  On the other hand, a remarkably high value of overall accuracy as 70.59% has 
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been achieved for the predictions based on the proposed model for life safety level assessment that involve a binary classifi-

cation of the damage states. Comparing the predicted states of the buildings with the results of the detailed on-site inspections, 

the predictive model was found to be capable of discriminating the cluster of severely damaged and collapsed buildings from 

the entire building database with a good accuracy. Therefore, the decision tree-based damage estimation scheme proposed in 

this study can be considered as an effective tool that might serve for the seismic risk prioritization of the buildings with the 

highest vulnerability.  

 

Taken together, this study has revealed the great potential of utilizing machine learning techniques to improve new proce-

dures or calibrate the existing methodologies for preliminary seismic assessment of the buildings. Since implementation of 

these techniques involve utilization of large datasets, further efforts are required to support post-earthquake activities for data 

collection from the damaged buildings and to establish reliable building damage inventories. 
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