
301 
 

Numerical analysis of an elastomeric bearing pad by hyperelastic models 
 
Rivania Cristina Rezende (Main Author) 

Department of Structural Engineering, Universidade Federal de Minas Gerais 
Av. Antônio Carlos 6627, Belo Horizonte 31270-901, MG (Brazil) 
rivaniarezende@yahoo.com.br  
https://orcid.org/0000-0001-6625-1388  
 

Marcelo Greco (Corresponding Author) 

Department of Structural Engineering, Universidade Federal de Minas Gerais 
Av. Antônio Carlos 6627, Belo Horizonte 31270-901, MG (Brazil) 
mgreco@dees.ufmg.br 
https://orcid.org/0000-0001-5500-0225 

 
Debora Francisco Lalo 
Department of Structural Engineering, Universidade Federal de Minas Gerais 
Av. Antônio Carlos 6627, Belo Horizonte 31270-901, MG (Brazil) 
debora.lalo@yahoo.com.br 
https://orcid.org/0000-0003-4184-2469 

 
Manuscript Code: 13824 
Date of Acceptance/Reception: 23.11.2020/19.03.2020 
DOI: 10.7764/RDLC.19.3.301 

 
Abstract 
Elastomeric bearing pads are responsible for transfering loads at the junction between beams and columns of bridges and viaducts, providing restrict 
freedom of movement in the superstructure. The elastomeric material of bearing pads is a synthetic rubber reinforced with carbon black particles and 
subjected to a process of vulcanization, also represented by hyperelastic material models based on strain energy density functions. The objective of 
the present paper is to use the finite element analysis software Abaqus® to select the most appropriate hyperelastic model, as well as its constants, 
applying them to a bearing pad installed in an existing viaduct, evaluating its behavior and the displacements resulting from the application of usual 
loads. A data fitting procedure is performed through the finite elements analysis software to obtain the Neo-Hooke, Arruda-Boyce and Yeoh model 
constants. The proposed methodology presents results that are coherent when compared to technical specification limits for available bearing pads 
products. 
 
Keywords: elastomeric bearing pad, bridges, deformation, hyperelastic model, finite elements. 
 

Introduction 
 
Bearing pads are devices installed between the beams and the fixed parts (columns) of bridges and viaducts, being 
responsible for transfering permanent loads associated with the structure's weight and traffic. They also accommodate 
displacements associated with vehicle braking and thermal expansion, avoiding the lateral transfer of loads to columns 
in addition to accommodating inclinations on beams caused by wind effects or bending (Gent, 2012). 
 
There are several types of support equipment, manufactured with different materials and varied forms. The selection 
of the appropriate typology depends on functional characteristics and the magnitude of loads verified in design. 
Elastomeric bearing pads stand out for their availability, durability and low cost. The association of rubber and steel 
settled in intermediate layers increases compressive and rotational stiffness, controlling vertical deflection and 
restricting the rubber bulging (Stanton & Roeder, 1982). 
 
Among the technologies developed to increase the strength and durability of rubber, the development of synthetic 
rubber, such as neoprene (polychloroprene), the addition of reinforcement materials, such as carbon black particles and 
molecular restructuring processes, such as vulcanization, extended the use of rubber for other sectors, like structural 
engineering. 
 
Rubber shows considerable deformations when loaded and returns to its original shape after removing the load, without 
volume changes. Thus, rubber is a hyperelastic material that shows a non-linear behavior of which complexity of 
characterization requires the use of constitutive equations developed through empirical material observations and 
formulated through strain energy functions (W) assuming the material as incompressible under quasi-static conditions. 
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Recent studies related to numerical analyses and simulations of circular bearing pads include Kalfs et al. (2016) and 
Huang et al. (2019), where the stress and strain that are displayed in the simulations are analyzed. 
 
The elastomers in structures are also adopted in regions subject to earthquakes. Studies about its use in bridges are 
contained in works of Shuijiang (2019) and Huang et al. (2018). Comparisons of seismic responses in a building with and 
without the insertion of rubber bearings with high damping are shown in Islam (2017). 
 

Description of the Problem 
 

Hyperelastic models 
 
The formulations used to represent elastomeric materials are not developed using the rheological deformation, but by 
the strain energy. Since the 1940 studies of Treloar, several hyperelastic models based on strain energy functions were 
developed to estimate and to provide a better accuracy in response to each deformation mode. The models developed 
by Mooney (1940), Treloar (1943), Valanis & Landel (1967), Ogden (1972), Arruda-Boyce (1993) and Yeoh (1993), among 
others. 
 
The constitutive laws related to hyperelastic models are given by classical elasticity with the nominal deformations (𝜀𝑖𝑗), 

the principal stretches (𝜆𝑖), which compose the deformation gradient tensor (Fik) and the right (Cik) and left (Bik) Cauchy-
Green deformation tensor as demonstrated in Treloar (19750). Tensors Cik and Bik are symmetrical and admit three main 
invariants, denoted as 𝐼1, 𝐼2and 𝐼3, by the following equations: 
 
  𝐼1 = 𝜆1

2 + 𝜆2
2 + 𝜆3

2  (1) 

 
 𝐼2 = 𝜆1

2𝜆2
2 + 𝜆2

2𝜆3
2 + 𝜆1

2𝜆3
2  (2) 
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The function W is based on invariants or stretches as follows: 
 
 𝑊 = 𝑓(𝐼1, 𝐼2, 𝐼3) ∨ 𝑊 = 𝑓(𝜆1, 𝜆2, 𝜆3) (4) 
 
Applying the incompressibility condition, the third invariant becomes equal to the unity. Adopting the use of subscribed 
bars for differentiation of the invariants after the application of incompressibility, the first and second invariant can be 
expressed as follows: 
 

 𝐼1̅ = 𝜆1̅
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2
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3
2 (5) 
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Finally, the separation of function W in 𝑊𝑑  (associated to shape changes) and 𝑊𝑉, (associated with volume changes). 
 

 𝑊 = 𝑊𝑑(𝐼1̅, 𝐼2̅) + 𝑊𝑉(𝐽) ∨ 𝑊 = 𝑊𝑑(𝜆1̅, 𝜆̅
2, 𝜆̅

3) + 𝑊𝑉(𝐽) (7) 
 
The main stretches are expressed as: 
 

 𝜆̅
𝑖 = 𝐽

−1

3 𝜆𝑖; 𝑖 = 1,2,3 (8) 
 
For larger deformations, as reported in (Ogden R. W., 1984), the stress tensor (𝜎𝑖𝑗) is given by the following equation: 

 

 𝜎𝑖𝑘 =
𝜕𝑊

𝜕𝐹𝑖𝑘
− 𝑝𝐹𝑖𝑘

−1; 𝑖, 𝑘 = 1,2,3 (9) 

 
where the first term is related to the deviatoric stress associated with shape changes, and p is related to hydrostatic 
pressure associated with volume changes. 
 
Through that Theory, some classical models stand out among several others that were developed and can be separated 
into two groups: 
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a Phenomenological models (based on material behavior observation during experimental tests): 

 Neo-Hooke: 
 

𝑊 = 𝐶10(𝐼1̅ − 3) +
1

𝐷1
(𝐽 − 1)2; 𝑤ℎ𝑒𝑟𝑒𝜇0 = 2𝐶10 (11) 

 Yeoh:   
 

𝑊 = ∑ 𝐶𝑖0
𝑁
𝑖=1 (𝐼1 − 3)𝑖  + ∑

1
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𝑘=1 ;  𝑤ℎ𝑒𝑟𝑒 𝜇0 = 2𝐶10  (12) 

 
b Micromechanical models (based on length of molecular chains, chemical link types and number of crosslinks 
observed on material): 

 Arruda-Boyce: 
 

𝑊 = 𝜇 ∑
𝐶𝑖

𝜆𝐿
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where the constants 𝐶𝑖,  are: 
 

𝐶1 =
1

2
; 𝐶2 =

1

20
; 𝐶3 =

11

1050
; 𝐶4 =

19

7000
; 𝐶5 =

519

673750
 (14) 

 

State of the Art 
 
Mechanical behavior of elastomers is very important for various areas of engineering, such as automotive (Lee et al., 
2017), medicine (Cardoso et al., 2018), civil construction (Al-anany and Tait, 2017; Gauron et al., 2018), among others. 
 
Hyperelastic material models have been developed and implemented in the most common computational codes. Some 
recent reviews of constitutive models can be found in Mansouri et al. (2017).  Since several industrial applications require 
high strain levels, it is important to deal with experimental results obtained from solids that undergo large strains, as can 
be seen in some recent works such as Cao et al. (2017). 
 
Obtaining the constants 
 
In order to obtain the constants associated with each constitutive model, experimental tests are carried out with rubber 
samples in which modes of pure deformation are induced from the application of loads and observation of 
displacements.  Pure deformation refers to a condition where stress does not vary with the positions. The tests used in 
the study are uniaxial tension, equibiaxial tension and planar tension (pure shear), as demonstrated in Figure 1, as well 
as their principal stretches. The procedures for the tests are available in (Miller, 2004) and the only standard version is 
for the uniaxial tension, through (ASTM, 2016). 
 

Figure 1. Schematics of uniaxial tension, equibiaxial tension and pure shear and the main stretches. Source: Adapted from Berselli, Vertechy, & Pellicciari (2011). 

 
𝜆1 = 𝜆; 𝜆2 = 𝜆3 = 𝜆−1 2⁄          𝜆1 = 𝜆2 = 𝜆; 𝜆3 = 𝜆−2           𝜆1 = 𝜆; 𝜆2 = 1; 𝜆3 = 𝜆−1 

 
 
The force-displacement test readings converted into stress-strain ratios, which are used for the data fitting phase 
performed through finite elements analysis software Abaqus®. 
 
According to Simulia (2013), to manage hyperelastic constants, test data is processed through linear procedure of least-
squares fit. Where for "n" data pairs of nominal stress and strain, the relative error 𝐸𝑟 measurement is minimized by the 
equation: 
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 𝐸𝑟 = ∑ (1 − 𝑇𝑖
𝑡ℎ/𝑇𝑖

𝑡𝑒𝑠𝑡)2𝑛
𝑖=1  (15) 

 

where 𝑇𝑖
𝑡ℎ is the value of stress obtained in the experimental test and 𝑇𝑖

𝑡ℎ is the theoretical stress of data fitting.  This 
procedure covers all strain energy functions available in the software, in any N order. 
 
Each model has a number of specific constants depending on the Norder of the functions. On the other hand, the stress 
during data fitting depends on the relationship between the principal stretches as follows: 
 

 Uniaxial: 

 𝜎 = 2(𝜆 −
1

𝜆2)(
𝜕𝑊

𝜕𝐼1
+

1

𝜆

𝜕𝑊

𝜕𝐼2
) (16) 

 Equibiaxial: 

 𝜎 = 2(𝜆 −
1

𝜆5)(
𝜕𝑊

𝜕𝐼1
+ 𝜆2 𝜕𝑊

𝜕𝐼2
) (17) 

 Pure shear: 

 𝜎 = 2(𝜆 −
1

𝜆3)(
𝜕𝑊

𝜕𝐼1
+

𝜕𝑊

𝜕𝐼2
) (18) 

 
Despite equibiaxial and pure shear tests not being used in the present study, it is important to point out their importance 
in rubber characterization, despite the absence of technical codes about them. Thus, the focus here is to apply a 
methodology, using three constitutive rubber models (Neo-Hooke, Arruda-Boyce and Yeoh), for numerical modeling of 
real elastomeric bearing pads based on the only currently available standard test (ASTM, 2016). 
 
Compressibility 
 
For almost incompressible materials, such as rubbers (v ≈ 0, 5), volumetric test is recommended to obtain the material 
Poisson ratio (v). The codes used in the software Abaqus® require the use of a certain degree of compressibility for code 
processing (Simulia, 2013). If the volumetric test is not available, it is possible to adopt a relative compressibility of a 
material by the ratio of its initial bulk modulus (k0) and the initial shear modulus (𝜇0) as bellow: 
 

 
𝑘0

𝜇0
=

2(1+𝑣)

3(1−2𝑣)
 (19) 

 
For reinforced carbon black rubbers, when the parts are not confined, Abaqus® manual guides the selection of relative 
compressibility between 50 and 200 (v between 0.490 and 0.4975) in order to obtain more accurate responses in 
simulations. 
 
The equation part associated with compressibility in each model (𝐷1) obtained with Poisson's ratio v and its initial shear 
modulus 𝜇0 is given by the equation: 
 

 𝐷1 =
2

𝑘0
=

3(1−2𝑣)

𝜇0(1+𝑣)
 (20) 

 

Methodology 
 
To realize a finite element analysis in elastomeric bearing pads using the hyperelastic models, it is necessary to 
characterize the rubber by experimental test results. In this study, the responses obtained in the uniaxial tension test, 
performed by a bearing pad manufacturer, were used for the procedure of data fitting through finite element method 
via Abaqus® software. Despite the importance of other non-standard tests related to pure deformation states, for the 
specific application presented here, the characterization of the material using only uniaxial tension test is satisfactory. 
 
Among the options of classic models available in software for data fitting, the Neo-Hooke, Yeoh (N=3) and Arruda-Boyce 
models were selected. According to Marlow (2013), constitutive models that depend only on the first invariant, as the 
three selected models, can be completely defined using responses from only one experimental test, such as the uniaxial 
tension. 
 
For finite elements used to represent the elastomeric material, it is necessary to use the hybrid formulation Lalo et al. 
(2019). Such formulation avoids volume strain locking (common in materials with v ≈ 0.5) that could block the finite 
element mesh from adequately performing the incompressible material deformations, leading to incorrect solutions. 
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Regarding the steel layers, reduced integration is adopted, avoiding the locking associated with excessive rigidity 
resulting from an integration using all the nodes of elements. To avoid mesh instability associated with deformation 
spurious modes, the Hourglass control function is activated on mesh to minimize such instability. 
 
Finite Element hybrid formulation considers independent interpolation functions for displacements and stress fields. 
The number and the position of nodal points used to describe these two fields are different. It is a very suitable 
formulation for large strains modeling. In the theory of hybrid formulation, pressure (surface force) is treated as an 
uncoupled variable and, therefore, must receive a suitable formulation through the weak form of the Finite Element 
Method. All the finite elements adopted are eight-node brick type (C3D8), with their proper terminations associated 
with the numerical solution required for each material. Considering the hybrid formulation in rubber and reduced 
integration in steel as previously reported, the elements adopted for materials are C3D8H and C3D8R, respectively. 
 
Discretization of the mesh was defined through a preliminary analysis of mesh refinement, in order to ensure the 
accuracy of results with less computational difficulty (Tavares, 1998). The NLgeom function of software was also 
activated to consider the effects related to geometric non-linearity involved with large deformations analysis. 
 
The elastomeric bearing pad used in this study has dimensions 500 x 600 x 130 (mm) and was implanted in a highway 
viaduct. The initial design considerations that guide geometry and configuration of bearing pads involve the relationship 
between compression load and its contact area, relating them to the normative limitations of compression stresses. The 
form factor, which relates its contact area with the lateral surface of the rubber layer, is another relevant factor that 
affects the behavior of the set. 
 
Bearing pads manufacturers usually provide pre-dimensioning tables where, from the pre-selected area, it is possible to 
identify possible configurations related to the number and thickness of steel and elastomer layers. 
 
Normally, after selecting the possible configuration, calculations are performed to verify displacements, distortions and 
stability of the set, ensuring that the expected results do not exceed limit values guided by standards. The information 
associated with geometry and loading defined in project after all these considerations is shown in Table 1. 
 

Table 1. Geometry and loading of the elastomeric bearing pad. Source: Developed by the author. 

Geometric characteristics of the layers Loads 

Type Quantity 
Thickness 

(mm) 
Type 

Load 
(kN) 

Covers 2 3 Vertical 3529.8 
Steel Layers 9 4 Longitudinal 36.1 

Rubber Layers 8 11 Lateral 28.3 

 
For the modeling, supporting steel plates were adopted in the lower and upper faces of the bearing pad to represent 
the connection with viaduct columms and beams. At the lower surface, total movement restriction was admitted as 
boundary condition, admitting the columns of the structure as rigid and not admitting lateral efforts transmitted by the 
viaduct beams. At the upper face, the movement freedom of all axis is allowed, where a Multi-point constraint - MPC 
restriction was admitted. In this type of restriction, a single point (RP - Reference Point) is used to restrict the movement 
of slave nodes from a specific part based on the movement of a single point. This point was considered as vertically 
10mm above the bearing pad geometric center, and the same was used for the application of the loads through distinct 
and cumulative steps between them. 
 
In the first step, vertical loading (y) associated with the structure's own weight and the traffic was considered. The second 
step regards longitudinal loading (z) associated with the thermal expansion and vehicles' braking effects. Finally, the 
third step regards the transversal efforts (x) representing the forces associated with wind on the structure. The Figure 2 
represents the viaduct outline with the bearing pad, as well as its geometric and loading configuration. 
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Results 
 

The use of evaluate material featured in the Abaqus® software allows to visualize the expected behavior in material 
associated with each formulation, in order to guide the choice of appropriate model (Simulia, 2013). 
 
In Figure 3, it is possible to verify the curves obtained in the selected models, as well as the curve obtained by uniaxial 
test. 

 
Figure 2. Illustrations of viaduct and elastomeric bearing pad with loads. Source: Developed by the author. 

 
 

 
Figure 3. Uniaxial data fitting results of rubber. Source: Developed by the author. 

 
 
 
Yeoh model had a better fit in the analysis, with an error smaller than 1% in the curves adjustment by least-squares 
method. Neo-Hooke model presented the highest variation, especially when the sample presented large deformations. 
 
The constitutive model selected is Yeoh (N = 3), whose constants obtained by the process are: C10 = 0.605 / C20 = 0.0249 
/ C30 = -0.00025. The adopted constant associated with compressibility, following the guidelines of the software's user 
manual (with relatie compressibility material, obtained by the equation 19 as equal to 200) was v = 0.4975, resulting in 
D1=0.0083. For steel plates, the elastoplastic model was adopted with constants E = 210 GPa, v = 0.3 and fyk = 235 MPa. 
 
By using the mesh refinement analysis, a model composed of 201498 finite elements was adopted, with 448165 nodes, 
totaling 1143474 variables that cost more than 600 minutes of processing by the software on a machine with an Intel 
Core i7-8565U 8th generation processor, with Windows 10 64-bit operating system. The machine's Random Access 
Memory (RAM) is 16 GB, DDR4, 2666MHz, with a 128GB SATA M.2 solid-state drive (SSD) and 1 TB, 5400RPM SATA hard 
drive (HDD). 
 
At the end of the first step, vertical loading produced a displacement of 5.87 mm in the bearing pad, with maximum 
stress reaching 50.472 MPa in steel and 1.99 MPa in rubber. After the second step, there was a longitudinal displacement 
of 10.36 mm, with maximum stress reaching 50.576 MPa in steel and 2.86 MPa in rubber. Finally, at the end of the third 
step, where all expected loads were acting on the bearing pad, there was an 8.43 mm offset in the transverse direction, 
with maximum stresses reaching 50.654 MPa in steel and 2.86 MPa in rubber. Figure 4 represents the mapping of the 
final equivalent von Mises stresses. 
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Figure 4. Equivalent von Mises stress (MPa) mapping in the middle section of the bearing pad after loading of step 1 (a), step 2 (b) and step 3 (c). Source: Developed by 
the author. 

 

 

                    
 
 

Discussion 
 

Analyzing the stress distribution, the importance of steel plates was observed since these layers concentrate the highest 
stresses. On the other hand, the rubber layers presented smaller stresses (about 5% of what occurs in steel), presenting 
pronounced deformations of the bearing pad's contour, especially in layers close to connections with structure 
(considered as rigid parts). 
 
Regarding the strain observed at the end of step 3, steel reached the greatest deformation of 0.015% while the rubber 
reached 50% even under extremely lower stresses than observed in steel layers. These results point to the resistive 
characteristic of steel and the flexibility of rubber observed in the relationship between maximum stresses and strains 
presented in each material. Figure 5 presents the maximum normal stress-strain curves observed on the vertical axis (y), 
where the loads of higher magnitude are considered (structure and traffic vehicles weight). 
 

Figure 5. Maximum Stress (MPa) x strain observed in steel and rubber. Source: Developed by the author. 

 

a) 

b) 

c) 
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The technical code EN (20005), as demonstrated in Gajewski et al. (2015), gives a stress limitation in steel plates under 
compression of about 33% of the plastic limit. In this simulation, a maximum limit of 22% was obtained, not reaching 
the code limit. 
 
The technical code ABNT (2015), presents a limit for compression stresses in bearing pads with widths larger than 30cm 
as 15MPa. When the contact area of the pad is 500 x 600 cm and vertical load is 3529.8 kN, the compression stress 
results in 11.77 MPa. In this case, the stress is smaller than the normative requirement limit. 
 
In the same Brazilian standard, there is a limitation associated with displacements caused by vertical and horizontal 
loads. Regarding vertical displacements, assuming the sum of thickness of all rubber layers as 94mm, the load when 
applied vertically results in a displacement of about 6.25% of that value, and the limit in standard is 15%. The longitudinal 
load resulted in a displacement of 11%, while transversal load reached 9%, both assuming the sum of thicknesses of 
elastomer as a reference. For horizontal loads, the limit allowed by standard is 50%. 
 
Regarding the mechanical properties of elastomer, using the formulations of the adopted constitutive model, it appears 
that the initial shear modulus of the material (μ0) is 1.21 MPa. Considering that Young's modulus is approximately three 
times that value, results should be close to E0 = 3.63 MPa. The bulk modulus, considering v = 0.4975, reaches 241.6 MPa. 
When Poisson's ratio approaches 0.5, the bulk modulus k0 are greater. In the case of incompressible materials (v = 0.5) 
this value tends to infinity. 
 
The elastomeric pad used in this study was not compared to experimental tests in order to allow the validation of the 
presented results. An alternative to evaluate those responses is observed in Gent (2012), which provides an analytical 
method for obtaining displacements in elastomeric pads based on the equations: 
 

 
𝐹𝑐

𝑑𝑐
=

𝐴∙𝐸𝑐

𝑁∙𝑡
;

𝐹𝑠

𝑑𝑠
=

𝐴∙𝜇

𝑁∙𝑡
     (21) 

 
where 𝐹𝑐 and 𝐹𝑠 are compression and shear loads, 𝑑𝑐  and 𝑑𝑠 are compression and shear displacements, N corresponds 
to rubber layers, t to rubber thickness and A to pad area. 
The effective compression modulus (𝐸𝑐) and shape factor (S) are given by: 
 

 𝐸𝑐 = 𝐸(1 + 𝜑𝑆2); 𝑆 =
𝐴

𝐴𝐵
=

𝐿∙𝐶

2𝑡(𝐿+𝐶)
 (22) 

 
Assuming a minimum shear modulus by technical code ABNT (2015) as 1 MPa, the mechanical properties assumed in 
the formulations are shown in Table 2, adapted from the author's original material mentioned above: 
 

 
Table 2. Material properties assumed for rubber. Source: Adapted from (Gent, 2012). 

Shear modulus μ0 
(MPa) 

Young’s modulus E0 
(MPa) 

 Bulk modulus k0 
(MPa) 

Compressibility 
coefficient φ 

1.034 4.344 1124 0.57 

 
Thus, the displacements obtained at each loading phase associated with responses obtained by software present a 
satisfactory approximation, as shown in Table 3: 
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Table 3. Displacements observed in final steps: Abaqus x Analytical method. Source: Developed by the author. 

Analysis 
Step 1 

y - (mm) 
 Step 2 

z - (mm) 
Step 3 

x - (mm) 

Abaqus 5.87 10.36 8.43 

Analytic 5.75 10.94 8.57 

   

 

Conclusions 
 

Made up of steel and rubber, elastomeric bearing pads need to be correctly dimensioned to guarantee safety for 
structures, providing the transmission of vertical forces and internally working lateral deformations of these structures. 
 
Due to the complexity involved in experimental tests, uniaxial tension is more popular, often being the only one available 
in this analysis. The use of data fitting technique using finite element method estimates the response of each 
hyperelastic model by correlating it with the tests' responses in order to select the appropriate model. 
 
The use of constitutive models based on first invariant only are more indicated when just one experimental test is 
available, presenting satisfactory responses. Among the three models tested, Yeoh model was selected for presenting 
less variation in fitting data. 
 
Applying the Yeoh model in elastomeric bearing pad, the equivalent von Mises stresses and displacements obtained 
were lower than the limits set by Brazilian and European standards, proving that geometry and arrangement of steel 
and rubber layers are according to normative requirements. 
 
An analysis by analytical method shows displacement results similar to that obtained from software anlysis. However, 
results related to stresses are not predicted by analytical method, which shows the contribution of numerical 
computational models in the study of rubber materials. 
 
In future studies it is suggested to analyze the bearing pad subjected to dynamic loads associated with traffic, which is 
considered in this study as static loads. In this case, the viscoelastic behavior of the elastomeric material must be 
considered. 
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