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Abstract 
The objective of this paper is to present the formulation for optimizing truss structures with geometric nonlinearity under dynamic loads, provide 
pertinent case studies and investigate the influence of damping on the final result. The type of optimization studied herein aims to determine the 
cross-sectional areas that will minimize the weight of a given structural system, by imposing constraints on nodal displacements and axial stresses. 
The analyses are carried out using Sequential Quadratic Programming (SQP), available in MATLAB’s Optimization Toolbox™. The nonlinear finite space 
truss element is defined with an updated Lagrangian formulation, and the geometrically nonlinear dynamic analysis performed herein combines the 
Newmark method with Newton-Raphson iterations. The dynamic analysis approach was validated by comparing the results obtained with solutions 
available in the literature as well as with numerical models developed with ANSYS® 18.2. A number of optimization examples of planar and space 
trusses under dynamic loading with geometric nonlinearity are presented. Results indicate that the consideration of damping effects may lead to a 
significant reduction in structural weight and that such weight reduction is proportional to increases in damping ratio. 
 
Keywords: structural optimization, geometric nonlinearity, dynamic analysis, Damping ratio, trusses. 

 

Introduction 
 
The importance of considering dynamic effects and nonlinear behavior in truss structures has been well established 
over past decades, and current scientific literature contains numerous research focused on the development of methods 
to account for such phenomena. Noor & Peters (1980), for instance, presented a computational procedure for predicting 
the dynamic response of space trusses considering geometric and material nonlinearities. The study consisted of 
implementing a mixed formulation to obtain member forces, nodal velocities and nodal displacements of a given 
structural system. The temporal integration of the governing equations was performed by using an explicit method. 
Kassimali & Bidhendi (1988) studied the stability behavior and large deformation response of trusses subjected to 
dynamic loads. The structural analysis was performed via a combination of Eulerian formulation and the Newmark 
method. Zhu, Al-Bermani & Kitipornchai (1994) presented a computational procedure for predicting the geometric and 
material nonlinear dynamic response of space trusses, using an updated Lagrangian formulation in combination with 
the Newmark method. Wang et al. (2006) developed a formulation, named the vector form intrinsic finite element 
(VFIFE or V-5) method, for predicting the nonlinear dynamic behavior of space trusses. The study includes the solution 
of several numerical examples by using a combination of the newly introduced formulae and an explicit time integration 
method. More recently, Shi et al. (2015) derived a formulation for the analysis of fully nonlinear truss elements 
considering geometric and material nonlinearities. The authors presented examples of space trusses subjected to static 
and dynamic loads to illustrate the application of the new method. 
 
An overview of current scientific literature focused on structural optimization shows numerous studies on trusses, 
frequently aimed at size optimization of these structures when subjected to static loading. However, said studies usually 
consider the isolated incidence of either dynamic effects or nonlinear behavior. As examples of the latter, Pyrz (1990) 
investigated the discrete optimization of elastic trusses with geometric nonlinearity. The study consisted of minimizing 
the weight of the structure by imposing constraints on element stresses, element stability and global structural stability. 
Saka & Ulker (1992) presented a structural optimization algorithm for geometrically nonlinear space trusses subjected 
to displacement, stress and cross-sectional area constraints. Results show that consideration of nonlinear behavior 
allows further reduction of overall weight. Suleman & Sedaghati (2005) developed a structural optimization algorithm 
for truss and beam structures undergoing large deflections against instability. The authors presented several benchmark 



322 
 

case studies and compared the results with solutions reported in the literature. Hrinda & Nguyen (2008) proposed an 
optimization technique for geometrically nonlinear shallow trusses with snap-through behavior subjected to stability 
constraints. The authors used the arc length method and a strain energy density approach within a discrete finite-
element formulation. 
 
Alternatively, current literature also provides a number of studies on size optimization of structures subjected to 
dynamic loading, without considering nonlinear behavior. Ohno et al. (1989) presented a computer-based methodology 
for minimum weight design of planar trusses subjected to multiple dynamic loads. The method imposes constraints on 
nodal displacement, stresses and natural frequencies. Chen (1992) proposed a weight optimization procedure using a 
sequential linear programming technique for the design of structures subjected to static and dynamic displacement 
constraints. Kocer & Arora (2002) studied the optimal design of lattice transmission towers subjected to seismic loading. 
Azad et al. (2018) used the big bang-big crunch algorithm to perform simultaneous size and geometry optimization of 
steel trusses subjected to dynamic excitations. 
 
As previously mentioned, studies on size optimization of trusses with simultaneous incidence of dynamic and geometric 
nonlinear effects are seldom observed. However, researches on other types of optimization and structures involving 
the effects of nonlinear analysis due to dynamic loads can be found in the works by Lee & Park (2015) and Yan, Cheng 
& Wang (2016), where the authors carried out topological optimization studies applied to different structures. Within 
the same line of study, Alfouneh & Tong (2018) applied the extended unit load method to study structural nonlinearities 
due to dynamic loads for topological optimization problems. Cho & Choi (2000) performed a sensitivity analysis using 
the finite difference method for structures composed of elastic plastic materials subjected to dynamic loads and subject 
to large deformations and Kim et al. (2009) analyzed an airplane wing subjected to dynamic loads and the effect of non-
linearities through equivalent static loads. 
 
Moreover, procedures for optimization of structures subjected to dynamic loading usually neglect the effects of 
damping. As such, the understanding of how this phenomenon influences optimal design remains limited. 
 
Given the lack of research on these subjects, this paper aims to present the formulation for optimizing truss structures 
with geometric nonlinearity under dynamic loads, provide case studies and investigate the influence of damping on this 
type of optimization process. 
 

The Optimization Problem 
 
The type of optimization studied herein aims to determine the cross-sectional areas that will minimize the weight of the 
structure, by imposing constraints on nodal displacements and axial stresses. As such, the variables of interest are the 
cross-sectional areas of the bars, contained in vector 𝐀, given by Eq. (1). 
 

 𝐀 = {A1, A2, … An} (1) 
 
where n represents the total number of bars of the structure. The objective function calculates the structural weight by 
adding up the weights of each bar, as shown in Eq. (2). 
 

 
f(𝐀) =∑ρAiLi

n

i=1

 
(2) 

 
where ρ is the density (in kg/m³), Ai is the cross-sectional area of bar i and Li is the length of bar i. The constraints 
imposed on the optimization problem are given by Eqs. (3) to (6): 
 

 Umax(𝐀) ≤ Ulim (3) 
 σTmax(𝐀) ≤ σTlim (4) 

 σCmax(𝐀) ≤ σClim (5) 

 Amin ≤ Ai ≤ Amax    i = 1, … , n (6) 
 
where σTmax and σCmax are the maximum values of tensile and compressive axial stresses developed in the structure, 

respectively; σTlim and σClim are prescribed allowable limits for tensile and compressive stresses; Umax is the maximum 

absolute value of nodal displacement suffered by the structure; Ulim is the allowable nodal displacement; and Amin and 
Amax are the minimum and maximum limits for the design variables. 
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In Eqs. (3) to (5), Umax, σTmax and σCmax are nonlinear functions of the design variables, obtained with a geometrically 

nonlinear dynamic analysis at each iteration of the optimization process. As shown in the following Sections, the nodal 
displacements of the structure (𝐔) are obtained by solving the equation of motion of the system, which is composed by 
parameters that depend on the cross-sectional areas of the bars (𝐀), such as mass matrix (𝐌), damping matrix (𝐂) and 
vector of internal forces (𝐅𝐢). Likewise, the axial stresses of the bars (σT or σC) are obtained by dividing the axial force 
acting in each bar by its cross-sectional area. In summary, the optimization problem can be expressed by Eq. (7). 
 

  Find                   𝐀 = {A1, A2, …An} 
that minimizes   f(𝐀) = ∑ ρAiLi

n
i=1  

subjected to:      

{
 
 

 
 Umax(𝐀) ≤ Ulim                           

σTmax(𝐀) ≤ σTlim                       

σCmax(𝐀) ≤ σClim                       

  Amin ≤ Ai ≤ Amax    i = 1, … , n

 

 
 

(7) 

 
To solve this problem, a set of computational routines were executed in MATLAB® R20116a using Sequential Quadratic 
Programming (SQP) (Spellucci, 1998; Gould & Toint, 2004), the algorithm of which is available on MATLAB’s Optimization 
Toolbox™. This method was chosen due to its recurrent use for solving problems with nonlinear constraints, such as the 
optimization problem in question. 
 

Geometrically Nonlinear Dynamic Analysis 
 
The governing equation of the problem is the general equation of motion of a structure, given by Eq.(8). 
 

 𝐌𝐔̈ + 𝐂𝐔̇ + 𝐅𝐢(𝐔) = 𝐅𝐞(t) (8) 
 

in which 𝐔̈, 𝐔̇ and 𝐔 are the vectors of nodal accelerations, velocities and displacements, respectively; 𝐌 is the lumped 
mass matrix; 𝐂 is the damping matrix; 𝐅𝐢 is the vector of internal forces, which depends on nodal displacement vector 
𝐔; and 𝐅𝐞 is the time-dependent external load vector. 
 
The transient response of the structure is obtained by solving Eq. (8), which involves the use of a time integration 
algorithm. The procedure shown in this paper for calculating transient response, combines the Newmark method (γ = 
0.5 and β = 0.25) with Newton-Raphson iterations. A flowchart algorithm of said procedure is presented in Figure 1. 
 

Figure 1. Geometrically nonlinear dynamic analysis procedure. 

 
 
For this paper, the transient responses of interest are the nodal displacements (𝐔) and the axial stresses of the bars (σ). 
The determination of 𝐔 is explicitly presented in Figure 1 and the axial stress of a given bar is calculated with Eq. (9). 
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σn = 
fBxn
A

 
(9) 

 
The variable fBxn represents the internal force of node B in the x direction under configuration Cn, as presented in the 

following Section; A is the cross-sectional area of the bar and σn is the axial stress of the bar. Positive values of σn 
denote tension (σT), while the alternative denotes compression (σC).  
 
It is important to emphasize that there are several ways to model damping, but it is usual to consider it to be viscous 
linear, as done in this paper, because it leads to a simpler mathematical treatment. The damping matrix (𝐂 ) is 
proportional to the mass (𝐌) and stiffness (𝐊) matrices, as mathematically expressed by Eq. (10). 
 

 𝐂 = α0𝐌+ α1𝐊 (10) 
 
Here, α0 and α1 are the Rayleigh coefficients, calculated by adopting an appropriate damping ratio (ξ). Cook, Malkus 
and Plesha (1989) states that, for steel structures, the ratio varies from 0.5% to 5%. Definition of the internal force 
vector (𝐅𝐢) and the stiffness matrix (𝐊) are given in subsequent Sections. 
 

Formulation of the Geometrically Nonlinear Element  
 
The finite element used in this study consists of a two-node space truss element with the geometry, degrees of freedom 
and internal forces presented in Figure 2. 
 

Figure 2. Space truss element: local system. 

 
 
An updated Lagrangian formulation was adopted to describe the motion of this element as summarized subsequentially. 
For a detailed explanation of the equations depicted here, see Yang and Kuo (1994). The current deformed configuration 
is denoted by Cn, and the last known deformed configuration is referred to as Cn-1. As shown in Figure 3, element lengths 
under such configurations are Ln and Ln-1, respectively. 
 

Figure 3. Finite element under equilibrium configurations Cn and Cn-1: global system. 
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The nodal displacement generated during the incremental step from Cn-1 to Cn is given by Eq. (11). 
 

 𝐮 = {uA vA wA uB vB wB}
T (11) 

 
The nodal displacements in the in the x, y and z directions are represented by u, v and w, respectively. Correspondingly, 
the internal forces of the element under the last known deformed configuration (𝐟𝐢n−1) and the current deformed 

configuration (𝐟𝐢n) are shown in Eqs. (12) and (13). 

 

 𝐟𝐢n−1 = {−fBxn−1 0 0 fBxn−1 0 0}
T

 (12) 

 𝐟𝐢n = {−fBxn 0 0 fBxn 0 0}
T

 (13) 

 
These vectors of internal forces interact with each other, and their relation is described by Eq. (14). 
 

 
𝐟𝐢n = (𝐟𝐢n−1 + ∆𝐟𝐢)

Ln
Ln−1

 
(14) 

 
The incremental internal force vector ∆𝐟𝐢, is obtained from Eq. (15). 
 

 
∆𝐟𝐢 = {−EA(

Ln
2 − Ln−1

2

2Ln2
)  0 0 EA(

Ln
2 − Ln−1

2

2Ln2
)  0 0}

T

 
(15) 

 
where E is the modulus of elasticity and A is the cross-sectional area. It should be noted that the material is considered 
linearly elastic. The local stiffness matrix of the element (𝐤) is formed by five components: the elastic stiffness matrix 
(𝐤e), the geometric stiffness matrix (𝐤g) and the higher-order stiffness matrices (𝐤1, 𝐤2 and 𝐤3). These matrices are 

defined by Eqs. (16) trough (22). 
 

 𝐤 = 𝐤e + 𝐤g + 𝐤1 + 𝐤2 + 𝐤3 (16) 

   
 

𝐤e =
EA

Ln−1

[
 
 
 
 
 
1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

 

(17) 
 
 

 

𝐤g =
fBxn−1
Ln−1

[
 
 
 
 
 
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1 ]

 
 
 
 
 

 

(18) 
 
 

   
 

𝐤1 =
EA

2Ln−1
2

[
 
 
 
 
 
∆u ∆v ∆w −∆u −∆v −∆w
0 0 0 0 0 0
0 0 0 0 0 0
−∆u −∆v −∆w ∆u ∆v ∆w
0 0 0 0 0 0
0 0 0 0 0 0 ]

 
 
 
 
 

 

(19) 

 

𝐤2 =
EA

2Ln−1
2

[
 
 
 
 
 
2∆u 0 0 −2∆u 0 0
∆v ∆u 0 −∆v −∆u 0
∆w 0 ∆u −∆w 0 −∆u
−2∆u 0 0 2∆u 0 0
−∆v −∆u 0 ∆v ∆u 0
−∆w 0 −∆u ∆w 0 ∆u ]

 
 
 
 
 

 

(20) 

 
𝐤3 =

EA

6Ln−1
3 [

𝐡 −𝐡
−𝐡 𝐡

] 
(21) 

 
𝐡 = [

3∆u2 + ∆v2 + ∆w2 2∆u∆v 2∆u∆w
2∆u∆v 3∆v2 + ∆u2 + ∆w2 2∆v∆w
2∆u∆w 2∆v∆w 3∆w2 + ∆v2 + ∆u2

] 
(22) 
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Within each matrix, ∆u = uB − uA, ∆v = vB − vA and ∆w = wB − wA. The stiffness matrix and the vector of internal 
forces of the element can be represented in the global system by Eqs. (23) and (24): 
 

 𝐤global = 𝐓T𝐤𝐓 (23) 

 𝐟𝐢global = 𝐓
T𝐟𝐢 (24) 

 
where 𝐓 is the transformation matrix. Finally, the stiffness matrix (𝐊) of the global system is the combination of the 
stiffness matrices of each element. Likewise, the vector of internal forces of the structure (𝐅𝐢) is obtained by combining 
the internal force vectors of each element. 
 

Numerical Results 
 
Six examples are presented in this Section. The first two consist of implementing the analysis procedure outlined in this 
paper to calculate the transient response of space trusses. To validate the geometrically nonlinear dynamic analysis, 
results obtained are compared with solutions available in the literature and with a finite element model generated in 
ANSYS® 18.2. The third example is a case study available in the literature, which is evaluated with the optimization 
routine. In the three following examples, the optimization routine is applied to the problem statement presented in this 
paper. For these last examples, the lower and upper limits chosen for the design variables are 3.04 cm² and 260 cm², 
respectively; the allowable values of nodal displacements were established as a fraction of the span of the structure, 
based on ABNT NBR 8800 (2008); and the limiting values allowed for stresses are defined by Eq. (25). 
 

 
σTlim = σClim =

fy
γa1

 
(25) 

 
In Eq. (25), fy is the yield stress, and γa1 is a reduction coefficient equal to 1.1. For the sake of simplicity, the same stress 

limit is adopted for both tension and compression. This choice, however, neglects the onset of instability phenomena.  
The same mechanical properties are adopted in all three last optimization examples: fy = 250 MPa, E = 200 GPa and 

ρ = 7850 kg/m³. To evaluate the influence of damping on the optimization process, each example considered an 
undamped case as well as six other damping ratios. 
 
Example 1: Geodesic Dome – Validation of the Geometrically Nonlinear Dynamic Analysis   
 
This example considers a geodesic dome with 24 bars and 13 nodes, shown in Figure 4a. Nodes 1 to 7 are unrestrained 
while nodes 8 through 13 are fixed. All bars have E = 68992 MPa, ρ = 2760 kg/m³ and A = 6.45 cm². The structure 
is subjected to the transient load shown in Figure 4b with P = 8.9 kN and Td = 0.01 s.  
 

Figure 4. (a) Geodesic dome (dimensions in centimeters); (b) Triangular Load. 

 
(a) 

 
 

 
(b) 

 
This same case was previously studied by Zhu, Al-Bermani & Kitipornchai (1994) and Wang et al. (2006). As such, the 
same time step Δt = 1.56 × 10−4 s and damping ratio ξ = 0% are reproduced in this analysis. Figure 5 shows good 
agreement between the transient response of node 1 obtained in this paper, and the one presented in the 
aforementioned literature. 
 
Example 2: Lattice Beam – Validation of the Geometrically Nonlinear Dynamic Analysis  
 
Figure 6a shows a lattice beam with 76 bars and 28 nodes, and Figure 6b shows the load used in this analysis (P = 50 
kN). Mechanical properties were fixed for all bars, with E = 71700 MPa, and ρ = 4152 kg/m³. However, three groups 
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with distinct cross-sectional areas are considered. For group 1, A = 0.8 cm², group 2 has A = 0.6 cm² and group 3, A =
0.4 cm². Nodes 1, 7, 8, 14, 15, 21, 22 and 28 are fixed. 
 

Figure 5. Geodesic dome: displacement of node 1 in the z direction. 

 
 

Figure 6. Lattice beam: a) dimensions in meters; b) step load. 

  
(a) (b) 

 
A time step of Δt = 10−5 s was used in the geometrically nonlinear dynamic analysis. Figure 7, compares the transient 
response of node 10 with the one obtained with ANSYS® 18.2. Acceptable agreement is observed for ξ = 0% and ξ = 5%. 
 

Figure 7. Lattice beam: displacement of node 10 in the z direction. 

 
 
 
Example 3: Planar truss with ten bars – Compared optimization 
 
This example consists of a planar truss with 10 bars and 6 nodes. Figure 8a shows its geometry, loading and boundary 
conditions. All bars have  ρ = 7860 kg/m³, A = 3.14 cm² and fy = 200 MPa. The structure is subjected to the dynamic 

load presented in Figure 8b.  
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Figure 8. Planar truss: a) geometry, loading and boundary conditions; b) dynamic load. Source: Kim & Park (2010). 

 

 
 

(a) (b) 
 
This same case was previously studied by Kim & Park (2010). In the original example, the authors studied the material 
nonlinearity of the structure, considering a bilinear elastoplastic strain-stress curve, with Young’s modulus of 200 GPa 
and tangent modulus of 50 GPa. In this paper, the structure is considered geometrically nonlinear and the material is 
linear elastic, with E = 50 GPa. 
 
The same parameters used by Kim & Park (2010) are reproduced in this paper: limiting value for tensile and compressive 
stresses is 250 MPa; lower and upper limits for the design variables are 0.785 cm² and 28.26 cm², respectively; duration 
time of the dynamic load is 0.0033 s; total analysis time is 0.03 s; time step is 0.0002 s; and damping ratio ξ = 0%. The 
initial design and the optimization results obtained are shown in Table 1. 
 

Table 1. Initial design and optimization results for the planar truss. 

 Initial design 
Optimization results 

Kim and Park (2010) This paper 

A1 (cm²) 3.14 4.976 4.1327 

A2 (cm²) 3.14 0.955 1.9422 

A3 (cm²) 3.14 4.806 5.1792 

A4 (cm²) 3.14 1.569 1.0745 

A5 (cm²) 3.14 0.786 4.6656 

A6 (cm²) 3.14 0.786 2.8912 

A7 (cm²) 3.14 3.163 3.6533 

A8 (cm²) 3.14 3.368 2.0882 

A9 (cm²) 3.14 2.099 1.1152 

A10 (cm²) 3.14 1.138 1.8695 

Weight (kg) 28.77 21.77 25.33 

σmax (MPa) 323.7 249 250 

 
As previously mentioned, Kim & Park (2010) studied a different type of nonlinearity than the one adopted in this paper. 
Therefore, it was expected that the results obtained were not the same. However, comparing both results allows to 
observe the influence of each nonlinearity in this case study. Kim & Park (2010) considered material nonlinearity and 
achieved a weight reduction of 24.33%, while the procedure used in this paper for geometrical nonlinearity resulted in 
a structure only 11.96% lighter than the initial design. Thus, studying this example considering material nonlinearity 
leads to almost double weight reduction than considering geometrical nonlinearity. 
 
Example 4: Geodesic Dome – Optimization 
 
In this case the optimization procedure is applied to the geodesic dome of Example 1. The geometry and load profile 
presented in Figure 4 are reproduced here. However, for this case fy = 250 MPa, E = 200 GPa, ρ = 7850 kg/m³, P = 

356 kN and Td = 0.1 s. Three groups of bars are considered, as shown in Figure 9. 
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Figure 9. Geodesic dome: group of bars. 

 
 
The limiting value of nodal displacement was fixed at 0.007 m, while the limit for tensile and compressive stresses was 
set at 227 MPa. For the dynamic analysis performed in the optimization process, a duration of 0.1 s and a time step Δt 
= 0.0001 s were adopted. The initial design and the optimization results obtained for different values of damping ratio 
are shown in Table 2. 
 

Table 2. Initial design and optimization results for the geodesic dome. 

 
Initial 
design 

Optimization results 

ξ = 0% ξ = 0.5% ξ = 1% ξ = 2% ξ = 3% ξ = 4% ξ = 5% 

A1 (cm²) 260 193.5808 189.8994 188.4265 185.6098 182.9248 180.3367 177.8271 

A2 (cm²) 260 177.4242 191.6735 189.6515 185.7113 181.9262 178.3112 174.8597 

A3 (cm²) 260 22.3056 16.2275 16.5639 17.1837 17.7396 18.2374 18.6856 

Weight (kg) 
3532.857

7 
1296.676

4 
1283.164

0 
1275.052

2 
1259.139

1 
1243.619

8 
1228.477

3 
1213.6991 

Umax (m) - 0.007 0.007 0.007 0.007 0.007 0.007 0.007 

σTmax (MPa) - 91.2696 101.7165 78.2718 56.5276 56.7036 56.9169 57.1421 

σCmax (MPa) - 161.0229 213.7410 207.8548 197.2475 187.9259 179.676 172.3087 

Number of 
iterations 

- 46 31 39 32 37 31 24 

Number of objective 
function evaluations 

- 458 216 303 238 326 341 191 

 
The comparative graph in Figure 10, indicates that variation of damping does not result in a significant reduction in 
weight. With ξ = 0.5%, the structure is only 1% lighter than the undamped case, likely due to the high rigidity of the 
structure. When the damping ratio is increased to 1%, the structure becomes 0.6% lighter in comparison with ξ = 0.5%. 
Additional increments of damping ratio, up to 5%, all indicate a weight reduction of 1.2% in relation to each previous 
increment. 
 

Figure 10. Geodesic dome: weight percentage reduction obtained for various damping ratios. 
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Example 5: Lattice Beam – Optimization 
 
Analogously to the previous example, the second optimization study reproduces the geometry, general load profile and 
groups of bars from Example 2. For this example, however, fy = 250 MPa, E = 200 GPa, ρ = 7850 kg/m³ and P = 100 

kN. The limit value of nodal displacement was set at 0.034 m and stresses are constrained to 227 MPa. A duration of 0.5 
s and a time step Δt = 0.001 s are adopted for the dynamic analysis. The initial design and the optimization results 
obtained for different values of damping ratio are shown in Table 3. 
 

Table 3. Initial design and optimization results for the latticed beam. 

 
Initial 
design 

Optimization results 

ξ = 0% ξ = 0.5% ξ = 1% ξ = 2% ξ = 3% ξ = 4% ξ = 5% 

A1 (cm²) 260 22.4222 15.3036 15.1937 15.0009 14.8071 14.6117 14.4168 

A2 (cm²) 260 7.7398 7.2404 7.0456 6.6952 6.3997 6.1557 5.9663 

A3 (cm²) 260 19.3697 16.0712 15.8582 15.4489 15.068 14.7177 14.3972 

Weight (kg) 32848.0837 2114.8170 1661.8152 1639.4898 1598.1998 1560.4130 1526.0832 1495.3670 

Umax (m) - 0.015043 0.019020 0.019008 0.018993 0.018999 0.019016 0.019035 

σTmax (MPa) - 189.1810 227 227 227 227 227 227 

σCmax (MPa) - 227 227 227 227 227 227 227 

Number of 
iterations 

- 43 30 33 35 38 33 33 

Number of 
objective function 

evaluations 
- 406 225 221 413 329 293 249 

 
As opposed to neglecting damping effects, Figure 11 shows that the use of a rather small damping ratio such as 0.5%, is 
enough to generate a significant reduction of weight, of 21%. From this point on, however, variations in damping bear 
no significant effect on structural weight if compared with each previous increment, with all subsequent weight 
reductions falling within the range of 1-2%. 
 

Figure 11. Lattice beam: weight percentage reduction obtained for various damping ratios. 

 
 
 
Example 6: Transmission Tower – Optimization 
 
This example consists of a transmission tower with 47 bars and 22 nodes (Figure 12a). All nodes are free to move with 
the exception of nodes 21 and 22 which are fixed. The structure is subjected to the general load profile shown in Figure 
12b, representing the weight of the cables and the wind load acting on the tower. Bar grouping and load values applied 
to each node are shown in Figure 12b.  
 
Limiting values allowed for nodal displacement and all stresses are set at 0.08 m and 227 MPa, respectively. A duration 
of 1 s and a time step Δt = 0.01 s are adopted for the dynamic analysis performed throughout the optimization 
procedure.  
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Figure 12. Transmission tower (a) dimensions given in meters; (b) applied loading and groups of bars (loads given in Newtons). 

 

 

(a) (b) 
 
Table 4 presents the initial design used and the optimization results obtained for different values of damping ratio. The 
transient response of node 6 after optimization, for all damping ratios, is shown in Figue 13. Figure 14 shows the axial 
stress of bar A over time. 
 

Table 4. Initial design and optimization results for the transmission tower. 

 Initial design 
Optimization results 

ξ = 0% ξ = 0.5% ξ = 1% ξ = 2% ξ = 3% ξ = 4% ξ = 5% 

A1 (cm²) 260 10.8159 3.0400 3.0400 3.0400 3.0400 3.0400 3.0400 

A2 (cm²) 260 3.0400 3.0400 3.0400 3.0400 3.0400 3.0400 3.0400 

A3 (cm²) 260 3.0400 3.0400 3.0400 3.0400 3.0400 3.0400 3.0400 

A4 (cm²) 260 4.8099 3.0400 3.0400 3.0400 3.0400 3.0400 3.0400 

A5 (cm²) 260 10.9227 6.3976 6.3057 6.1223 6.0835 6.1106 6.1368 

A6 (cm²) 260 3.0400 3.0400 3.0400 3.0400 3.0400 3.0400 3.0400 

A7 (cm²) 260 15.6703 13.6533 13.4943 13.1851 13.0487 12.9892 12.9282 

A8 (cm²) 260 4.6436 3.8368 3.7894 3.6949 3.6632 3.6581 3.6524 

A9 (cm²) 260 3.0400 3.0400 3.0400 3.0400 3.0400 3.0400 3.0400 

A10 (cm²) 260 3.6654 4.1631 4.1654 4.1714 4.1336 4.0754 4.0180 

A11 (cm²) 260 19.2338 20.2782 20.1900 20.0230 19.8096 19.5732 19.3391 

Weight (kg) 22076.0900 664.9780 584.3981 581.8902 577.0689 572.4562 567.8903 563.3601 

Umax (m) - 0.08 0.08 0.08 0.08 0.08 0.08 0.08 

σTmax (MPa) - 193.5679 183.6943 182.0174 178.6671 177.5891 177.5664 177.5423 

σCmax (MPa) - 201.6504 214.3881 205.1776 208.0514 208.3433 206.3747 204.4334 

Number of 
iterations 

- 152 60 55 78 43 50 39 

Number of 
objective function 

evaluations 
- 2100 891 822 1248 605 707 550 
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Figure 13. Transmission tower: displacement of node 6 in x direction. 

 
 

Figure 14. Transmission tower: axial stress of bar A. 

 
 
In a manner similar to Example 5, Figure 15 indicates that the consideration of a 0.5% damping ratio results in significant 
weight reduction, 12.1% in this case. Furthermore, in accordance with results obtained in all previous optimization 
examples, it seems that further increments in damping ratio cease to significantly affect structural weight.  
 

Figure 15. Transmission tower: weight percentage reduction obtained for various damping ratios. 

 
 

Conclusions 
 
In this paper, a set of computational routines were performed in MATLAB to study the optimization of geometrically 
nonlinear truss structures subjected to dynamic loading, using the SQP algorithm available on MATLAB’s Optimization 
Toolbox™. The formulated optimization problem sought to determine the cross-sectional areas that would minimize 
the weight of the structure, imposing constraints on nodal displacements and axial stresses. 
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As these constraints imply the necessity to perform a geometrically nonlinear dynamic analysis at each iteration of the 
optimization process, the first two examples were dedicated to validating the analysis procedure. The transient 
response of the space trusses was calculated, and the results obtained were consistent with solutions available in the 
literature and with results generated by ANSYS® 18.2. Therefore, the analysis procedure is considered validated. 
 
In Example 3, an optimization case study available in the literature was evaluated, comparing the influence of different 
nonlinear behaviors. Results showed that considering material nonlinearity may lead to almost double weight reduction 
than considering geometrical nonlinearity. 
 
In Examples 4 to 6, the optimization process was used in order to study space and planar trusses. Results showed a 
significant reduction of weight if damping is accounted for in the second and third examples. As opposed to neglecting 
damping effects, the consideration of a damping ratio of ξ = 0.5% resulted in 21% weight reduction of the lattice beam 
and 12.1% of the transmission tower. However, in the first example this reduction of weight was not as substantial. The 
geodesic dome exhibits a structural weight reduction of just 1% with ξ = 0.5% when compared with ξ = 0%. This is likely 
due to the higher rigidity of the geodesic dome in comparison with the other two structures. 
 
Furthermore, it was observed that in all three last optimization examples, the increase of damping ratio was 
proportional to the reduction of weight. A 0.5% increment in ξ on the geodesic dome (from ξ = 0.5% to ξ = 1%) caused 
a reduction of weight of 0.6%. Subsequentially, doubling the increase in damping ratio also caused the reduction in 
weight to double to 1.2%. The remaining optimization studies also show analogous responses starting at the second 
damping ratio increment of ξ = 0.5% to ξ = 1%. Further increases of 1% in ξ doubled the weight reduction of the lattice 
beam from 1% to 2%, while the transmission tower shows a difference from 0.4% to 0.8% in weight within the same 
range of damping ratio values. 
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