
34
Diciembre

2016

Building an RRG computational grammar1

Francisco Cortés Rodríguez: Instituto de Lingüística Andrés Bello, Universidad de La Laguna, España.
| Correo electrónico: fcortes@ull.es
Ricardo Mairal-Usón: Departamento de Filologías Extranjeras y sus Lingüísticas, Facultad de Filología,

Fecha de recepción: enero de 2016
Fecha de aceptación: abril de 2016

ONOMÁZEIN 34 (diciembre de 2016): 86-117
DOI: 10.7764/onomazein.34.22

Universidad de La Laguna
España

UNED
España

Francisco Cortés Rodríguez

Ricardo Mairal-Usón

87

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

Several grammatical models have shown a
growing interest for the development of the condi-
tions necessary to satisfy the so-called criterion of
computational adequacy. Within Role and Referen-
ce Grammar (RRG [Van Valin & LaPolla, 1997; Van Va-
lin, 2005; Pavey, 2010]), there have been some works
seeking to implement the model in different com-
putational environments (Diedrichsen, 2011, 2013;
Guest, 2009; Nolan & Periñán-Pascual, 2014; Salem
et al., 2008). In this scenario, the works of Van Valin
& Mairal (2014), Periñán-Pascual (2013) and Periñán-
Pascual & Arcas (2014) have set up the guidelines to

devise a parsing system called ARTEMIS (Automati-
cally Representing TExt Meaning via an Interlingua-
Based System) for the computational treatment of
the syntax and semantics of sentences.

The goal of this paper is to contribute to the
development of ARTEMIS focusing specifically on
the design of the rules necessary for the effective
computational parsing of unmarked simple clau-
ses following the format of the Layered Structure
of the Clause as described in RRG. Such rules should
yield, as a result for every sentence, a parsed tree fo-
llowing the format of grammatical analyses in RRG.

Keywords: Role and Reference Grammar; FunGramKB; computational grammar; constructions; lexical
rules; syntactic rules; constructional rules; attribute-value matrix; conceptual modeling;
the layered structure of the clause.

Abstract

1 This research was funded by the Spanish Ministry of Economy and Competitiveness: grants FFI2011-29798-C02-01,
FFI2011-29798-C02-02 and FFI2014-53788-C3-1-P.

88

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

1. Preliminaries

Human-machine interaction is one of the most
outstanding challenges in the research agenda
of different disciplines. A significant number of
studies devoted to such an interaction precisely
targets at natural language processing (NLP) and
in particular at understanding the meaning of a
given text by a machine. This endeavor has be-
come a major concern provided that today we
are living in the era of information where access
to massive amount of data has become a daily
routine task. Therefore it comes as no surprise
that the development of resources and tools for
more efficient information retrieval systems has
become one top priority within the field of natu-
ral language understanding (NLU).

In this context, linguistics, and linguistic
models in particular, cannot be silent to this cha-
llenge since what we need is solid explanatory
frameworks with labels, tags and analytical tools
to understand meaning construction. There are
quite a few morphological and syntactic parsers
that can provide taggings of a given text. Howe-
ver, to the best of our knowledge, semantic ta-
ggers are scarce in number and those available
merely provide tags in terms of semantic roles
and labels of the type ‘agent’, ‘beneficiary’, ‘re-
cipient’, etc2. Therefore, the relevant question is
whether it is possible to provide a semantic an-
notation so that a computer can understand the
meaning of a natural language text. We maintain
that such an endeavor, though complex in many
respects, is possible if performed from the point
of view of a functional theory like Role and Refe-
rence Grammar (RRG henceforth; Van Valin & La-
Polla, 1997; Van Valin, 2005; Pavey, 2010). Periñán-
Pascual & Arcas (2014: 167-168) highlight three

features of this grammar which make it suitable
for its application in NLP: (a) the semantic and
communicative grounding of the grammatical
objects (rules and structures) in the model; (b) the
fact that it is a monostratal theory, in which se-
mantic and syntactic structures are closely inter-
connected through a bidirectional linking algo-
rithm; and (c) its typological orientation, which
comes as an additional value when dealing with
multilingual environments.

Because of the amenability of the model
to computational testing, several researchers
have recently devoted their work to applying
RRG in different computational models. Among
them are the following works: Diedrichsen, 2013;
Guest, 2009; Nolan & Periñán-Pascual, 20143; No-
lan & Salem, 2011; Salem et al., 2008; Van Valin &
Mairal, 2014. Within this scenario, one of the most
outstanding contributions in the computational
modelling of RRG has been the creation and de-
velopment of FunGramKB (Functional Grammar
Knowledge Base; Periñán-Pascual, 2013; Periñán-
Pascual & Arcas, 2007, 2010; Periñán-Pascual &
Mairal, 2009, 2012), a multipurpose lexico-concep-
tual knowledge base for NLP systems, and more
particularly for NLU. FunGramKB includes the
following components (see appendix 4):

(a) The lexical component, which is language-
specific and consists of two submodules: the
lexicon (which includes in the format of en-
tries all the linguistic information related to
the lexical units) and the morphicon (which
deals with all inflectional processes of a lan-
guage).

(b) The grammatical level, also language depen-
dent where constructional schemata of a gi-
ven language are stored4.

2 As a case in point, FrameNet (Boas, 2005; Fillmore et al., 2003a, 2003b; Ruppenhofer et al., 2010), which is a lexical database
based on frame semantics, has been used in a number of NLP systems (Shen & Lapata, 2007; Ovchinnikova et al., 2010),
although some important shortcomings have been found for its direct application in NLP tasks.

3 This volume includes a good number of interesting proposals involving the application of RRG in computational envi-
ronments.

4 FunGramKB also incorporates the contributions from constructional grammars, especially from the Lexical Construc-
tional Model (LCM; Mairal & Ruiz de Mendoza, 2008, 2009; Ruiz de Mendoza, 2013; Ruiz de Mendoza & Galera, 2014; Ruiz de
Mendoza & Mairal, 2007).

89

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

(c) The conceptual component, which is langua-
ge independent and stores all deep semantic
units and structures into different submodu-
les: the ontology (a hierarchical storehouse
for concepts in a human mind), the cogni-
con (or repository of procedural conceptual
schemas or scripts to encode stereotypical
actions) and the onomasticon (for real world
entities and events).

The fact that FunGramKB is ontologically-based
has brought about the enrichment of the system
of semantic representations from RRG. The Logi-
cal Structures from RRG are replaced by Concep-
tual Logical Structures (CLSs henceforth; Mairal
et al., 2012; Van Valin & Mairal, 2013). CLSs keep as
a pillar for semantic representations the Aktion-
sart characterization of lexical units as encoded
in the original Logical Structures, but the primiti-
ves are now conceptual units that come from the
ontology (they are marked with angle brackets
<C>; see examples below). Therefore, the CLS in-
volves the interaction of both the ontology and
the lexicon5.

The following examples are helpful to illus-
trate the shift from the Logical Structures to the
CLSs (Periñán-Pascual, 2013: 218):

(1) Peter broke the glass.
 Logical structure (RRG):
 <IF

DEC <TNS
PAST <ASP

PERF <[do’ (Peter, Ø)] CAUSE
[BECOME broken’ (glass)]>>>>

 CLS (FunGramKB):
 <IF

DEC <TNS
PAST <ASP

PERF <CONSTR-L1
KER2 <[AKT

ACC
[+BREAK_00 (%PETER_00- Theme, $GLASS_00-
Referent)]]>>>>

As can be seen, ontological concepts like
$GLASS_00 or +BREAK_00 are now used instead
of predicates like glass or primitives like broken’.

There are other noticeable changes, as is the in-
troduction of constructional operators (CONSTR-
L1) marking every argumental construction and
Aktionsart operators (AKT) as well (cf. Periñán-
Pascual, 2013, and Periñán-Pascual & Arcas, 2014,
for a detailed description of these features).

Although the CLS brings a heavier ‘concep-
tual’ load into semantic representations, it still
needs some refining from a computational pers-
pective. In fact, if we want the NLP system to
reach a deeper level of comprehension it is ne-
cessary to model CLS representations into COREL
(COnceptual REpresentation Language) structu-
res. Thus the CLS in (1) is modeled into a COREL
scheme of the following type:

(2) +(e1: +DAMAGE_00 (x1: %PETER_00)Theme
(x2: $GLASS_00)Referent (f1: (e2:+SPLIT_00 (x1)
Theme (x2)Referent))Result)

 ‘Peter damaged the glass into pieces’

CLSs and COREL Schemes are ambitious resour-
ces which aim at providing the semantic repre-
sentation of a given text but, prior to this, it is
necessary to spell out the syntactic structure of
the input text. In other words, we need a resou-
rce that can automatically map the syntactic re-
presentation to the semantic representation of
a given piece of language; that is, the resource
must be the computational replica of the syntax-
to-semantics linking interface in RRG, with the
contributions from the LCM and also taking into
account the new deep-conceptualist turn in se-
mantic structures provided by FunGramKB. Such
a resource is ARTEMIS (Automatically Represen-
ting TExt Meaning via an Interlingua-Based Sys-
tem), a NLP prototype primarily designed for na-
tural language understanding. Periñán-Pascual
(2013) and Periñán-Pascual & Arcas (2014) offer
the first proof-of-concept prototype of ARTEMIS
and provide its basic architecture (cf. section 2).

5 The FungramKB NLP Lab, a virtual lab for natural language processing within a functional perspective, provides free access
to Navigator, which offers the conceptual and linguistic properties of lexical entries in English: www.fungramkb.com.

90

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

However, apart from some preliminary papers
dealing with specific aspects of ARTEMIS6, a full
text providing full coverage of the intricacies of
the RRG computational grammar was needed.

Within this framework, the primary aim of
this paper is to discuss the format of the com-
putational grammar that forms part of this re-
source. This grammar could be understood as a
computational implementation of the layered
structure of the clause (LSC) in RRG. Hence, this
paper is organized as follows. Section 2 provides
a brief overview of the architecture of ARTEMIS
and the way the RRG analysis of simple clauses
is treated computationally within this prototype.
Section 3 deals with the format of the grammar
development environment which means dealing
with the format of syntactic and lexical rules. Be-
cause of space restrictions, the description will
concentrate on the rules necessary for the par-
sing of the elements belonging to the NUCLEUS
layer in the clause structure. Section 4 will illus-
trate how different syntactic structures within
the nucleus are dealt with the new set of rules.
In the account of such structures we will also
offer the rules necessary for the analysis of the
innermost layer in the clause structure, namely
the PREDICATE. Finally, some concluding remarks
and future lines of research are part of section 5.

2. ARTEMIS
2.1. Overall architecture of ARTEMIS

In its current state, ARTEMIS is a proof-of-concept
NLP system designed to transduce a natural lan-
guage fragment (a sentence) to its morphosyn-
tactic form and, subsequently, to its underlying
semantic structure. It is linguistically grounded
in RRG and the LCM and deploys FunGramKB to
obtain the relevant conceptual units for semantic
representations. To a great extent, ARTEMIS can

be considered the computational counterpart of
the syntax-to-semantics linking algorithm in RRG;
the following is a simplified view of the proces-
sing phases of a text within this prototype:

Input text > CLS representation > COREL Sche-
me → Reasoner > Output text

In order to deal with all the tasks in this pro-
cess, ARTEMIS comprises the following modules:
The Grammar Development Environment (GDE),
the CLS Constructor and the COREL-Scheme Buil-
der. Whereas the last two modules are in charge
of deriving the semantic representations of sen-
tences, the GDE includes the grammatical rules
necessary for the morphosyntactic parsing of
natural language expressions; such rules should
yield as a result a parsed tree for every sentence,
following the principles of grammatical analy-
ses in RRG. The following UML7 diagram (figure
1) models the behavior of the GDE and the CLS
Constructor (Periñán-Pascual & Arcas, 2014: 178).

In this routine, there is an initial phase of
tokenization intended to split a text into senten-
ces and subsequently into word tokens, which
are encoded in Attribute-Value Matrixes (AVMs)
(see below section 2.3 for a detailed description).
The output of this first phase feeds the Build
grammar module, where syntactic, constructio-
nal and lexical rules will parse the text and ge-
nerate a morphosyntactic tree; syntactic rules
will provide such a tree in accordance with the
RRG layered model for the structure of clauses;
constructional and lexical rules will in turn refi-
ne such a tree by endowing it with the specific
properties of lexical and constructional units.
Unlike syntactic rules, which must be pre-defined
in the GDE, constructional and lexical rules are
constructed automatically in accordance with
the tokens from the input stream. Next, there is

6 Mairal & Periñán-Pascual (2014), Cortés-Rodríguez (2016) and Díaz-Galán & Fumero (2016) address some more specific is-
sues, i.e. the lexical-grammatical interface and the computational treatment of referential phrases and the auxiliary do.

7 UML (Unified Modeling Language; Rumbaugh et al., 1999; Debrauwer & Van der Heyde, 2010) is a general purpose object
modeling language to visualize software systems and processes.

91

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

a subsequent tree refinement process in order
to relocate, if necessary, some tree nodes and to
filter out some node attributes. The last step in
the diagram makes reference to the extraction of
semantic units for the construction of the CLS.

So far, the GDE consists of two basic types of
theoretical constructs, a set of rules that account
for syntactic structures and a library of Attribu-
te-Value Matrixes (AVMs) for grammatical units.
At the present stage, however, both the library
of AVMs and the production rules in the Build
grammar stage are still underdeveloped, since in
the seminal works where ARTEMIS is described
(Periñán-Pascual, 2013, and Periñán-Pascual & Ar-
cas, 2014) the rules proposed are not fully consis-
tent with the functional approach that supports
RRG’s grammatical analyses for clauses.

Therefore, the goal of our research is to de-
sign the syntactic rules necessary for parsing
simple clauses, together with the set of lexical
rules that will help to obtain the grammatical

(syntactic and semantic) information from those
lexical tokens that are not stored in the FunGra-
mKB lexicon; i.e. the tokens associated to functio-
nal lexical units. This will also lead us to develop
the AVMS necessary to encode the grammatical
features associated to both those units and the
more abstract constituents where they belong
in the syntactic structures. Since parsing in the
GDE is based on the analysis proposed for clau-
ses within RRG, it is necessary to briefly describe
the basic features of syntactic description in this
model. Section 2.2 offers such a description.

2.2. The syntax of simple clauses in RRG:
The layered structure of the clause8

The RRG notion of syntactic clause structure is
the so-called Layered Structure of the Clause
(LSC) and it is based on two fundamental con-
trasts:

8 This section is an abridged description of the format in which simple clauses are syntactically analyzed in Van Valin &
LaPolla (1997: 17-52) and Van Valin (2005: 3-20).

	

Sentence

CLS

AVM	 of	 tokens
Production	
rules

Tree

Build grammar

Parse input

Refine Tree Extract CLS

Pre-process
input

Tree

FIGURE 1
The ARTEMIS process (abridged version)

92

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

(1) Between Predicating and Non-predicating
elements, in the first place, and

(2) Within non-predicating elements, between
XPs which are arguments of the predicate
and those which are not.

In this view, the primary constituents of the
clause is the NUCLEUS, which houses the PREDI-
CATE (usually a verb, but need not be); the CORE,
which contains the Nucleus and the Arguments
of the predicate, and the PERIPHERY, which sub-
sumes non-arguments. This is represented in fi-
gure 2.

There are additional elements which may
occur in a simple sentence, i.e. a single-clause
sentence. The first is the PRECORE SLOT [PrCS],
the position in which question words appear in
languages in which they do not occur in situ, e.g.

FIGURE 2

FIGURE 3

Formal representation of the LSC

Abstract LSC with extra-core and detached positions (from Van Valin & LaPolla, 1997: 38)

English, Italian, Zapotec; it is also the location
in which the fronted element in a sentence like
Bean soup I can't stand appears. This position is
clause-internal but core-external. In addition to
a clause, a simple sentence may also include a
phrase in a detached position, most commonly
in the LEFT-DETACHED POSITION [LDP]. This is
the location of sentence-initial elements, most
commonly adverbials, which are set off from the
clause by a pause, e.g. Yesterday, I bought myself
a new car or As for John, I haven't seen him in a
couple of weeks. The left-detached position is ne-
ver obligatory. There is also a RIGHT-DETACHED
POSITION [RDP], as in sentences like I know
them, those boys.

Thus, a sentence like What did Robin show
to Pat in the library yesterday? is analysed as in
figure 4 (Van Valin, 2005: 7).

FIGURE 4
The LSC of the clause in English

93

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

Note that in this representation the auxiliary
verb did is not attached to anything, and this is
because it is not part of the nucleus, core or peri-
phery. It is, rather, the morphological realization
of a tense OPERATOR which modifies the clause.
Grammatical categories like aspect, tense, and
modality are treated as operators modifying di-
fferent layers of the clause. Each of the clause
levels may be modified by one or more opera-
tors. Since operators are qualitatively different
from predicates and their arguments, they are
represented in a distinct projection of the clau-
se. The element common to both projections is
the nucleus. The general schema of a projection
grammar representation of the layered structure
of the clause is given in figure 5.

The top part is called the "constituent projec-
tion", the bottom the "operator projection". The two
projections are joined through the nucleus, which
is the central element in the clause both in terms
of defining the range of possible arguments, on the
one hand, and being the primary entity to which
the grammatical categories encoded as operators
are oriented, on the other. In the operator projec-
tion, the scope of the operator is indicated by the
unit which is the target of the arrow. Each opera-
tor at a given level is so represented, and if there
is more than one, e.g. both tense and illocutionary
force, then the relative scopes are explicitly indica-
ted. Figure 6 shows an analysis of the sentence Bru-
no might have been running around the park giving
both the constituent and the operator projections.

FIGURE 5
The LSC with constituent and operator projections (adapted from Van Valin, 2005: 12)

94

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

2.3. The layered structure of the clause
in a computational framework: some ne-
cessary adaptations

The implementation of ARTEMIS involves some
changes in the RRG descriptive apparatus. Two
are especially relevant for the parsing process of
simple clauses:

• The integration of a constructional node, L1-
CONSTR, in the layered structure of the clau-
se.

• The substitution of the operator projection
by feature-bearing matrixes and unification
mechanisms.

The first modification is already proposed in Peri-
ñán-Pascual & Arcas (2014) and it is a direct conse-
quence of the influence of the LCM in the design of
both FunGramKB and ARTEMIS. The LCM is a model
of meaning construction which envisages the se-

mantic structure of clauses as the joint result of
lexical and constructional structures. This model
distinguishes the following types of constructions:
(a) Level 1 constructions, often called argument-
structure constructions, like the ones postulated
by Goldberg (1995, 2006); (b) Level 2, or implicational
constructions (such as What’s X doing Y?), which
describe low-level situational cognitive models
(or specific scenarios), giving rise to meaning in-
terpretations which carry a heavily conventionali-
zed implication; (c) Level 3 deals with illocutionary
constructions (e.g. Can you (please) X?), which are
means of encoding high-level situational models
(or generic scenarios); and (d) Level 4, or discourse
constructions, based on high-level non-situational
cognitive models (such as reason-result or condi-
tion-consequence), with particular emphasis on
cohesion and coherence phenomena.

FunGramKB incorporates these distinctions in
one of its lexico-grammatical modules, the so-ca-
lled Grammaticon, which is a storehouse of cons-

FIGURE 6
Constituent and operator projections of an English sentence

95

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

tructions arranged in different Levels, in accordan-
ce with the tenets for constructional organization
of the LCM. FunGramKB has, therefore, two sources
to motivate both semantically and structurally the
basic semantic structure underlying a sentence:
the inventory of Level 1 constructions (or argu-
ment structure constructions9) stored in the Gram-
maticon, and the information about the basic sub-
categorization frames of predicates, as encoded in
their corresponding lexical entries in the Lexica.
Periñán-Pascual (2013: 214) classifies the predicate
frames as Kernel-1, Kernel-2 and Kernel-3 Construc-
tions (corresponding to intransitive, monotransiti-
ve and ditransitive structures, respectively). The
introduction of a distinction between Kernel and
Non-kernel (or L1 Constructions) is of tantamou-
nt importance for the design of the parsing rules
in the GDE, as it involves the introduction of the
CONSTR-L1 node which occupies an intermediate
layer between the CORE and the CLAUSE nodes in
the LSC (cf. Periñán-Pascual & Arcas, 2014: 171-175,
for a detailed description). Hence, the format of the
enhanced LSC would be as in figure 7.

Note that, in general, Kernel Constructions
would account for the configuration of the CORE
in unmarked cases, as it houses by default the
arguments and the primary predicate of every
clause. L1-Constructions, on the other hand, may
introduce further constituents into the clause,
which can be of two different types: quite often
some argument-constructions introduce a secon-
dary predicate (NUC-S in the tree) as for instance
in resultatives like This weather has dried my dai-
sies dead / to death; other constructions, on the
other hand, involve the addition of an Argument-
Adjunct (AAJ)10 as is the case of Beneficiary consti-
tuents like for Bruno in Marita bought a toy bone
for Bruno; there are even cases in which both ty-
pes are simultaneously added as in Bruno barks
doors (AAJ) open (NUC-S) (cf. figure 8).

9 Level 2, 3 and 4 Constructions are pragmatic and discursive in nature. Therefore, they lie beyond the scope of the GDE in
ARTEMIS.

10 Apart from Arguments and Adjuncts, RRG distinguishes a third type of clausal constituent, namely Argument-Adjuncts:
they share with arguments their non-optional status but contrasts with them because they are predicative; i.e. they con-
tribute meaning to the overall structure of the clause, as done also by adjuncts. Furthermore, since Argument-Adjuncts
—quite contrarily from Arguments— are not predictable from the logical structure of the lexical predicate, it is but
logical to assume that they are introduced by L1 constructions.

FIGURE 7

FIGURE 8

The enhanced format of the LSC

The enhanced LSC of an English sentence

96

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

In Cortés-Rodríguez (2016) it is argued that, once
the new L1-CONSTR layer is accepted, it seems
more sensible to redefine the original Pre-Core
slot position as PreC-L1 positions; the PreCore
Slot is described in RRG as the place typically oc-
cupied by question words in languages in which
they do not appear in situ (Where did you find
that bone?) and also by fronted constituents as
in Excuses like this I cannot accept. However, in
sentences like:

(3) For whom did you wrap the gift? (Beneficiary
L1-Construction)

(4) What did you open the safe with? (Instru-
mental Construction)

(5) Into which window did you kick the ball?
(Caused-Motion L1-Construction)

the clause initial phrases are not Kernel (i.e. Core)
arguments, but L1-Constructions constituents,
introduced by constructional rules (i.e. once the
node CONSTR-L1 is inserted in the structure), and
it seems logical to consider that they occupy a
PreC-L1 positions. The same would hold for any
fronted or interrogative Kernel-constituent.

The second adjustment applied to the ori-
ginal LSC has to do with the fact that ARTEMIS
follows the object-oriented paradigm and repre-
sents feature-oriented structures —as are gram-
matical units and nodes in the LSC— as AVMs.
These are computationally implemented in the
form of user-defined objects in the programming
language C# (Periñán-Pascual & Arcas, 2014: 178).
In doing so, ARTEMIS also follows unification ap-
proaches to grammar (Boas & Sag, 2012; Sag et al.,
2003) and morphosyntactic parsing is carried out
jointly by a set of production rules and a num-
ber of feature unification operations intended to
satisfy the structural and semantic constraints
encoded in the AVMs. The inclusion of this type
of linguistic objects has a crucial impact on the
so-called operator projection in the LSC. Abstract
grammatical categories, such as tense, modali-
ty, or illocutionary force (i.e. operators in RRG),
which modify the different nodes in the LSC

are dispensed with in the GDE in ARTEMIS since
both such grammatical categories and the word
tokens (function words) which encode them are
endowed with AVMs lodging the corresponding
values for each of the relevant categories.

Thus, the general schema represented in fi-
gure 5 above is substantially modified since the
operator projection is substituted by feature-
bearing nodes in the constituent projection, as
partially reflected in figure 9.

As highlighted in figure 9, grammatical units
such as the node CORE are not atomic, but are
interpreted as feature complexes housing di-
fferent types of morphosyntactic information,
which are described as Attributes; in this specific
example, the AVM for the CORE includes Attribu-
tes for Number (“Num”), Template (i.e. type of ar-
gument structure), “Tense”, (internal) “Negation”
and “Modality”. The approach to the syntactic
analysis of clauses in ARTEMIS is de facto an en-
hanced theory of the LSC at least in the following
aspects:

(i) Syntactic and semantic structures un-
derlying the clause involve the collaboration
of both lexical and constructional units; the
immediate consequence of this collabora-
tion has been the introduction of an inter-
mediate layer, the CONSTR-L1 level, which
houses constituents introduced by argu-
ment-constructions (AAJs and NUC-Ss); this
new layer has in turn led to reinterpret the
extra-core positions as pre- or post- ConstrL1
positions.

(ii) The different types of grammatical informa-
tion modifying the layers in the LSC are not
analyzed separately in an operator projec-
tion, but constitute a set of features belon-
ging to the AVMs for grammatical objects
(see appendix 3 for the full list of AVMs).

Even though the rules for the analysis of cons-
tituents at clause level in ARTEMIS is already
partially based on the layered structure of the
clause, as evidenced by the existence of nodes

97

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

such as CORE, PER or NUC in its present state
of development, the GDE needs a fully-fledged
description of many specific syntactic rules and
AVMs to comply with the RRG approach to the
grammatical analysis of clauses. Sections 3 and
4 will deal with the rules and AVMs required for
a detailed parsing of the innermost layers in the
LSC; i.e. the NUC and the PRED.

3. The Grammar Development Environ-
ment

In accordance with the description offered in sec-
tion 2, the GDE in ARTEMIS must, therefore, con-

sist of two types of theoretical constructs: on the
one hand, syntactic rules, which are necessary
for the construction of the syntactic trees corres-
ponding to the LSC; on the other hand, AVMs for
all units participating in the LSC which are not
derivable from the knowledge base information
(i.e. the lexicon, the grammaticon or the onto-
logy) must be devised as well. Hence, the nodes
corresponding to all the layers in our enhanced
LSC and the word tokens for function words enco-
ding grammatical information require such type
of feature-bearing structures. Figure 10 illustrates
how each of these elements will be located in di-
fferent components and the distribution of tasks
among such components in the parsing process.

FIGURE 9
AVMs in the LSC (a partial representation)

98

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

Syntactic rules are in charge of building the
enhanced framework of the LSC, by spelling out
the internal constituency of each of its nodes, as
for instance the NUC and the PRED nodes in the
figure above; in other words, the goal of syntactic
rules is to convert into a computational format
what we have in the enhanced LSC.

Lexical rules will provide the word tokens
for function words with morphosyntactic in-
formation and content words will be assigned
the grammatical and semantic information as
encoded in their corresponding entries in the
Lexicon, which in turn are connected with the
net of conceptual structures in the Ontology in
FunGramKB.

Syntactic and lexical rules are therefore the
focus of this paper. The following section provi-
des a stepwise methodology for rule-designing
within the GDE.

3.1. The format of a syntactic rule

The process for the design of rules within AR-
TEMIS involves making a series of decisions, as
shown graphically in figure 11.

In Phase (a) it is necessary to make a seriali-
zation of the structures under study; that means
to express in the format of context-free grammar
rules the syntactic phenomenon that is being
considered, usually described in the constituent
projection in RRG. Such a rule will be incorpora-
ted in the Syntactic rules’ repository within the
GDE. For instance, the following partial (simpli-
fied) rule

(6) NUC → MODD PRED

would account for the combination of a verbal
predicate and a deontic modal within a Nucleus,

FIGURE 10
Task distribution among ARTEMIS and FunGramKB components in parsing

99

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

as in the sentence He [[must]MODD[leave]
PRED]NUC early.

Serialization means to assign a POS label
to all the elements in the sequence, something
which is not necessarily the case in RRG: it was
already mentioned that function words are not
attached to any node in the Constituent Projec-
tion in the original LSC (as was the case of the au-
xiliary did in the sentence What did Robin show
to Pat in the library yesterday?, analysed in figure
4 above). Once the representation of operators in
a separate projection is abandoned in the revi-
sed proposal of the LSC for the GDE, they must
be integrated in the rules. Consequently, in (6) the
new POS label MODD was created to designate
all tokens of deontic modal auxiliary verbs (must,
may, can’t, has to, etc.).

Once a new POS label is created, it must
be registered in the POS repository in ARTEMIS

(phase b), and immediately afterwards its corres-
ponding AVM must be designed and encoded in
the catalogue for AVMs also in the GDE; turning
again to example (6), it was necessary to create
the AVM for the MODD category11:

(7)
 <Category Type="MODD">

 <Attribute ID="Illoc" />
 <Attribute ID="Mod" />
 <Attribute ID="Num" />
 <Attribute ID="Per" />
 <Attribute ID="Pol" />
 <Attribute ID="Syn"/>
 <Attribute ID="Tense" />

 </Category>

in this process all possible morphosyntactic phe-
nomena that such a POS may express must be

11 AVMs are encoded in XML format, similar to that of other platforms for the analysis of human language data, as is NLTK
(Natural Language Toolkit; Bird et al., 2009).

FIGURE 11
Rule-designing phases in ARTEMIS

100

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

considered, as it is necessary to integrate them
in the format of Attributes within the AVM (phase
c); therefore, in the case of the AVM for the MODD
category, the following Attributes had to be in-
cluded: Illoc(utionary force), Mod(ality), Num(ber),
Per(son), Pol(arity), Syn(tactic coocurrence) and
Tense. Deontic modals in English show gram-
matical marking (i.e. have Values) for some of
these Attributes.

Phase (d) involves also the design of AVMs for
each of the attributes created in phase (c); these
AVMs will include the Values available for each of
those grammatical Attributes; thus, the AVM for
the Illoc(utionary Force) Attribute will have the
following format, including three values, namely
‘declarative’, ‘interrogative’ and ‘imperative’12:

(8)
 <Attribute ID="Illoc " obl="*" num="1">

 <Value>?illoc</Value>
 <Value Tag=”declarative” >dec< /Value>
 <Value Tag=”interrogative” >int< /Value>
 <Value Tag=”imperative” >imp< /Value>

 </Attribute>

Finally, if the new POS refers to a type of function
word, all tokens of such a category must be in-
tegrated in the GDE through the lexical rules,
which include all the values that every token
expresses, be they from the attributes we have
designed (or from other attributes already inclu-
ded in the repository of AVMs), as shown in the
following examples:

(9) couldn’t: [mod:abl, pol:neg, tns:past]
(10) couldn’t: [mod:psbl, pol:neg, tns:past]

These lexical rules describe the grammatical in-
formation in the two word tokens couldn’t which

display three values for the categories of Moda-
lity (‘ability’ or ‘possibility’), Polarity (both with a
‘negative’ value) and Tense (‘past’ on both occa-
sions).

Once the AVMs for the syntactic units, POS
nodes and Attributes have been implemented,
they can be integrated in the relevant positions
in the syntactic rule; the result of this process for
the rule in (6) would be:

(11)
 NUC [asp=?, concept=?, illoc=?, num=?, per=?,

syn= ?, tpl=?, t= ?] → MODD[illoc= dec, mod=
abl | obl | perm | psbl | vol, num= pl | sg | null,
per= 1 | 2 | 3, null, syn= toverb | null, = past |
pres | null] PRED[concept= ?, tpl=?]

This rule, however, is incomplete as it only accou-
nts for one of the realizational possibilities of the
NUC layer in English. When all possible variants
of the constituent structure of NUCs are consi-
dered, it will be possible to design a completely
detailed rule. This rule and the ones for the PRED
layer are the topic of the next section. It will also
include an explanation of the format of the rules
and AVMs presented in appendixes 2 and 3.

3.2. A computational look at the LSC: The
NUC and PRED layers in the GDE

This section includes the set of rules designed to
adequately predict the internal configuration of
the NUCLEUS layer in simple clauses13:

(12)
 NUC [asp=?, concept=?, illoc=?, num=?, per=?,

tpl=?, t= ?] → PRED[concept= ?, illoc=?, num=?,
per=?, tpl=?, t=?] || AUX[asp= pf | pr, illoc= dec |

12 Both in phases (c) and (d) it is advisable to take into account if such a feature occurs in other languages and, if this is the
case, to consider those functional distinctions which are relevant; for instance, ‘perfective’ as an aspectual distinction
is not present in English but it is encoded as a value in the AVM for aspect, since it exists in Spanish, as shown in the
contrast between the two past forms of verbs; e.g. imperfective comía (‘he was eating’) vs. perfective comió (‘he ate’).

13 These rules only represent part of the grammar of simple active declarative clauses, which means that subordinate
clauses are beyond the scope of this paper.

101

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

imp , num= pl | sg, per= 1 | 2 | 3, syn= ving | vpar,
t= pas | pres] PRED[concept= ?, syn= ving |
vpar, tpl=?] || MODD[illoc= dec, mod= abl | obl
| perm | psbl | vol, num= p | sg | null, per= 1 | 2
| 3, null, syn= toverb | null, = past | pres | null]
PRED[concept= ?, tpl=?] || MODST[illoc= dec,
num= pl | sg, | null per= 1 | 2 | 3, | null, sta= inf
| nec | poss | subj, syn= toverb | null, t= past |
pres] PRED[concept= ?, tpl= ?] || AUX[asp= pf ,
illoc= dec | imp, num= pl | sg, per= 1 | 2 | 3, syn=
apar, t= past | pres] APAR [asp= pr, syn= apar
+ ving] PRED[concept= ?, syn= ving, tpl=?] ||
MODD[illoc= dec, mod= abl | obl | perm | psbl
| vol, num= pl | sg | null, per= 1 | 2 | 3, null, syn=
toverb | null, t= past | pres | null] AUX [asp= pf
| pr, syn= ving | vpar] PRED[concept= ?, syn=
ving | vpar, tpl=?] || MODD[illoc=dec, mod=
abl | obl | perm | psbl | vol, num: pl | sg | null,
per: 1 | 2 | 3 | null, syn= toverb | null, t= past |
pres | null] AUX [asp: pf, syn= apar] APAR[asp:
pr syn= apar + ving] PRED[concept: ?, syn=
ving, tpl=?] || MODST [illoc= dec, num= pl |
sg, | null per= 1 | 2 | 3, | null, sta= inf | nec |
poss | subj, syn= toverb | null, t= past | pres
| null] PRED[concept= ?, syn= toverb | null,
tpl=?] ||MODST[illoc= dec, num= pl | sg, | null,
per= 1 | 2 | 3, | null, sta: inf | nec | poss | subj,
syn= toverb | null, t= past | pres | null] AUX
[asp: pf, syn= toverb | null + apar] APAR[asp:
pr syn= toverb | null + apar] PRED[concept:
?, syn= ving, tpl:?] ||MODST [illoc= dec, num=
pl | sg, | null, per= 1 | 2 | 3, | null, sta= inf | nec
| poss | subj, syn= toverb | null, t= past | pres |
null] MODD[mod= abl | obl | perm | psbl | vol,
syn= toverb | null + toverb] PRED[concept= ?,
syn= toverb | null, tpl:?] || MODST [illoc= dec,
num= pl | sg, | null, per= 1 | 2 | 3, | null, sta=
inf | nec | poss subj, syn= toverb | null, t= past
| pres | null] MODD[mod= abl | obl | perm |
psbl | vol, syn= toverb | null + toverb] AUX
[asp= pf | pr, syn= toverb + vpar | toverb+ ving
] PRED[concept= ?, syn= vpar, tpl=?] || MODST
[illoc= dec, num= pl | sg, | null, per= 1 | 2 | 3, |
null, sta: inf | nec | poss | subj, syn= toverb |
null, t: past | pres | null] MODD[mod= abl | obl

| perm | psbl | vol, syn= toverb | null + toverb]
AUX [asp= pf, syn= toverb+ apar] AUX [asp=
pr, syn= apar + ving] PRED[concept= ?, syn=
ving, tpl=?]

This rule, which is apparently very complex, re-
sults just from the combination of two types of
lexical units: the PRED (predicate node) which
can appear alone (first option in the rule) or in
combination with one or several types of auxi-
liary verbs (as encoded in the other options).

Despite this, the internal configuration of the
NUC node is rather complex if compared with the
way it is analyzed in the constituent projection
within RRG. This is due to the fact that function
items (like auxiliary verbs) are not usually taken
as part of the constituent projection but as ele-
ments that participate in the operator projection
in RRG analyses. However, since there is only one
single projection in ARTEMIS, they must now be
integrated in the set of syntactic rules that form
part of the GDE. Let us recall that the GDE con-
sists of feature-based production rules subject to
the linearity of constituents, since parsing —in
accordance with Earley’s algorithm— proceeds
in a bottom up fashion complemented with top-
down predictions. Furthermore, as stated by Pe-
riñán-Pascual & Arcas (2014: 182):

the psychologically-plausible behavior of the

parser lies in the fact that it is: a. an incremental

left-corner parser, where each successive word

being encountered is incorporated into a larger

structure by combining bottom-up processing

with top-down predictions, and b. a parallel par-

ser, since multiple parse structures can be gene-

rated locally, so there is no need to re-analyze the

input if one parse structure proves incorrect (i.e.

no backtracking). (UNDERLINING IS OURS)

Thus, every lexical unit must find a room in our
syntactic rules, and it seems plausible to incor-
porate all auxiliary verbs together with the pre-
dicate (PRED) within the NUC node; this seems
close to the analysis within Systemic Linguistics

102

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

of the so-called Verbal Group. The different types
of Auxiliary verbs are codified by means of the
following Nodes: AUX (‘Auxiliary verb’), APAR (‘Au-
xiliary verb - past participle’), MODD (‘Modal Auxi-
liary verb - Deontic’), MODS (‘Modal Auxiliary verb
- Epistemic’). It has been necessary to establish a
distinction between the two types of modal ver-
bs as they are the formal realization of different
operators in the LSC, namely the CORE operator
of Modality and the CLAUSE operator of Status.
The AVMS corresponding to these nodes are then
as follows (the AVM for MODD is repeated here
to ease the explanation; see appendix 3 for the
AVMs of the other constituents):

(13)
 <Category Type="MODD ">

 <Attribute ID="Illoc" />
 <Attribute ID="Mod" />
 <Attribute ID="Num" />
 <Attribute ID="Per" />
 <Attribute ID="Pol" />
 <Attribute ID="Syn"/>
 <Attribute ID="Tense" />

 </Category>

(14)
 <Category Type="MODST ">

 <Attribute ID="Illoc" />
 <Attribute ID="Num" />
 <Attribute ID="Per" />
 <Attribute ID="Pol" />
 <Attribute ID="Sta" />
 <Attribute ID="Syn"/>
 <Attribute ID="Tense" />

 </Category>

Another interesting feature that arises for the
first time in rule (12) is the complex structure of
the nodes in ARTEMIS, once they are analyzed as
non-atomic AVMs comprising a number of gram-
matical features corresponding to the original
Operators in RRG. These AVMS which are store-
houses of grammatical operators have a very dis-
tinctive characteristic: Whereas in RRG the Ope-

rator projection is concerned only with the layer
over which operators have scope, unification
processes require for grammatical features to be
encoded not only in the Layer which they modify,
but in all the nodes dominated by such a layer
down to the lexical token which is the formal
expression of the operator concerned. Feature-
Unification involves the percolation from such a
lexical unit to the node over which the Operator
has scope. For instance, in the case of the AVM
for NUC, the percolation process (or ‘Feature-
Unification Path’) of the attribute “Person” starts
always in the first (leftmost) token within NUC
(i.e. the first verb in the Verbal Group) and perco-
lates up to PRED and from there to NUC, where
Unification takes place, as shown in figure 12.

The dotted arrows illustrate the inheritance
of features from the AUX (blue arrows) and APAR
(red arrows) tokens to the NUC node. The symbol
? which appears as a Value for the other Attribu-
tes in the NUC node indicates that the Values for
such Attributes are also inherited from the other
dominated constituents (PRED and VING) in Uni-
fication processes.

Feature Unification can in fact run up the
whole structure of the clause. A very interesting
case in this regard concerns the ‘Illoc(utionary
force)’ Attribute, which appears encoded in the
AVMs of the first constituent of NUC (the first au-
xiliary verb or the lexical predicate if there are no
auxiliaries), even though unification will finally
take place at Clause level, which is the layer over
which this operator has scope (cf. figure 13).

Once the AVMs for MODD and MODST were
registered as new POSs in ARTEMIS, two further
AVMs must be created for the Attributes that are
also new, namely “Modality” and “Status” (this
last label includes epistemic modals and sub-
junctive mood, in accordance with the values of
the equivalent operator in RRG):

(15)
 <Attribute ID="Modality " obl="*" num="1">

 <Value>?mod </Value>
 <Value>ability>abl</Value>

103

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

FIGURE 12
Feature percolation from Auxiliaries to the NUCleus

104

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

FIGURE 13
Feature Unification Path of Illocutionary Force Attribute

 <Value>obligation>obl</Value>
 <Value> permission>perm</Value>
 <Value> possibility>psbl</Value>
 <Value> volition>vol</Value>

 </Attribute>

(16)
 <Attribute ID="Status " obl="*" num="1">

 <Value>?sta</Value>
 <Value>inference>inf</Value>
 <Value>necessity>nec</Value>

 <Value>possibility>poss</Value>
 <Value>subjunctive>subj</Value>

 </Attribute>

The specific tokens for grammatical units of
this type are encoded as instances of the lexical
rules in the GDE; each of these tokens will en-
code only the attributes they codify, with their
specific values. Thus, the following will be ins-
tances of how modal verbs are encoded in the
lexical rules:

105

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

(17)
MODD

can: [mod:abl, pol:pos, tns:pres]

can: [mod:psbl, pol:pos, tns:pres]

could: [mod:abl, pol:pos, tns:past]

could: [mod:psbl, pol:pos, tns:past]

may: [mod:psbl, pol:pos, tns:pres]

may: [mod:perm, pol:pos]

must: [mod:obl, pol:pos]

should:[mod:obl, pol:pos]

ought: [mod:obl, pol:pos, syn: toverb]

have:[num:sing, per:1 | 2, mod:obl, pol:pos, ,
syn: toverb]

have:[num:pl, mod:obl, pol:pos, syn: toverb]

will: [mod:vol, pol:pos, tns:pres]

shall: [mod:vol, pol:pos, tns:pres]

would:[mod:vol, pol:pos, tns:past]

should: [mod:vol, pol:pos, tns:past]

(18)
MODST

may: [sta:poss, pol:pos, tns:pres]

must: [sta:nec, pol:pos]

should:[sta.inf, pol:pos]

ought: [sta:inf, pol:pos, syn: toverb]

have:[num:sing, per:1 | 2, sta:nec, pol:pos,
syn: toverb]

have:[num:pl, sta:nec, pol:pos, syn: toverb]

needn’t [sta:nec, pol:neg]

can’t/cannot: [mod:abl, pol:neg, tns:pres]

can’t/cannot: [mod:psbl, pol:neg, tns:pres]

couldn’t: [mod:abl, pol:neg, tns:past]

couldn’t: [mod:psbl, pol:neg, tns:past]

might: [mod:psbl, pol:pos, tns:past]

might: [illoc: int, mod:psbl, pol:pos, tns:past]

mustn´t: [mod:obl, pol:neg]

shouldn’t: [mod:obl, pol:neg]

oughtn’t: [mod:obl, pol:neg, syn: toverb]

has:[num:sing, per:3, mod:obl, pol:pos, syn:
toverb]

won’t: [mod:vol, pol:neg, tns:pres]

shan’t: [mod:vol, pol:neg, tns:pres]

wouldn’t: [mod:vol, pol:neg, tns:past]

shouldn´t: [mod:vol, pol:neg, tns:past]

might: [sta:poss, pol:pos, tns:past]

mustn´t: [sta:nec, pol:neg]

shouldn’t: [sta:inf, pol:neg]

oughtn’t: [sta:inf, pol:neg, syn: toverb]

has: [num:sing, per:3, sta:nec, pol:pos, syn:
toverb]

may [sta:subj, pol:neg]

106

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

The other types of auxiliary verbs that may form
part of the NUC node are grouped under the la-
bels AUX (“Auxiliary verb”) and APAR (“Auxiliary
verb-participle”); their corresponding AVMs are:

(19)
 <Category Type="AUX">

 <Attribute ID="Aspect" />
 <Attribute ID="Illoc" />
 <Attribute ID="Num" />
 <Attribute ID="Per " />
 <Attribute ID="Tense" />

 </Category>

(20)
 <Category Type="APAR">

 <Attribute ID="Aspect" />
 <Attribute ID="Syn " />

 </Category>

Within the category AUX several functional items
must be included, as is the case of all tokens of

the verbs be, have and do not encoded in other
more restrictive subcategories of auxiliary verbs,
like APAR. The lexical tokens of our category APAR
would only be the following:

(21)
 APAR
 been [asp: pr; syn: apar + aing | ving] been

[syn: apar + vpar]

They correspond to the participle form of the
progressive auxiliary and the auxiliary be for
passives, respectively. Other possible APAR forms
like done and had are not relevant since they do
not really participate in any grammatical opera-
tion. Therefore there is no need to encode them
in our lexical rules.

The following figure illustrates one of the
most complex combinations of Auxiliary verb
forms and Predicate available within the Nu-
cleus. It also shows how the Values of the Attribu-
te “Syn” are unified within this layer (cf. figure 14).

FIGURE 14
Unification of “Syn” Features in a complex NUC

107

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

The combination of the auxiliaries plus the PRED
has yielded a long rule with several disjunctive
possibilities on the internal constituency of the
NUCLEUS. It has also led us to set up different
alternative rules to account for the realization
possibilities of the PRED constituent:

(22)
PRED[concept: ?, illoc:?, num:?, per:?, recip:?,
reflex:?, tpl:?, t: ?] → VERB [concept:?, illoc: dec
| imp | int, num: pl | sg, per: 1 | 2 | 3, recip: g | n
| o, reflex: g | n | o, tpl: ?, t: past | pres]

PRED[concept: ?, recip:?, reflex:?, tpl:?] →
VPAR[concept: ?, recip: g | n | o, reflex: g | n | o,
tpl: ?]] ‖ VING[concept: ?], recip: g | n | o, reflex:
g | n | o, tpl:?]]

PRED[concept: ?, recip:?, reflex:?, tpl:?]→VERB
[concept: ?, recip: g | n | o, reflex: g | n | o, tpl: ?]

The choice among one of the different types
of tokens for the PRED constituent captured in
these rules depends crucially on the absence/
presence of auxiliary verbs and on the type of
auxiliary that immediately precedes the lexi-
cal predicate (i.e. the PRED constituent). The
following section shows several case studies,
which will help to motivate the creation of the
rules in (22).

4. Some case studies

Let us consider, firstly, the case in which the NUC
consists of only a verbal predicate, as in the fo-
llowing clauses:

(23) I write sth / he writes sth

This is an interesting case despite its apparent
simplicity, as it involves a very different situation
from those in which there is an AUX constituent,

as will be seen in the next case. Here the category
VERB has a very rich AVM as many of the attribu-
tes encoding verbal morphology (bolfaced in the
next AVM) must have a definite value:

(24)
 <Category Type="VERB">

 <Attribute ID="Aspect" />
 <Attribute ID="Concept" />
 <Attribute ID=”Illoc" />
 <Attribute ID="Num" />
 <Attribute ID="Per" />
 <Attribute ID="Recip" />
 <Attribute ID="Reflex" />
 <Attribute ID="Template" />
 <Attribute ID="Tense"

 </Category>

The attributes aspect and illocutionary for-
ce are not bolfaced as aspectual distinctions in
English are marked ONLY by means of AUX cons-
tituents; the same does not hold in Spanish,
where there is an aspectual opposition between
imperfective and perfective aspect encoded in
the VERB category. However, in the AVM corres-
ponding to the Attribute Aspect there will be at
least 4 possible values —progressive, perfect,
indefinite and imperfective—, thus allowing for
the distinctions that hold in Spanish. The AVM
for the Attribute “Aspect” would then be as fo-
llows:

(25)
 <Attribute ID="Aspect" obl="*" num="s">
 <Value>?asp</Value>
 <Value Tag="indefinite">ind</Value>
 <Value Tag="imperfective">imp</Value>
 <Value Tag="perfect">pf</Value>
 <Value Tag="progressive">pr</Value>
 </Attribute>

Somewhat similar is the behavior of illocutio-
nary force in Spanish, which quite often is only

108

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

marked at the phonological level14. The (partial)
rules to account for the internal structure of the
NUCLEUS in (23) are:

(26)
NUC [asp: ?, concept: ?, illoc:?, num:?, per:?,
recip:?, reflex:?, tpl:?, t: ?] → PRED[concept: ?,
illoc:?, num:?, per:?, recip:?, reflex:?, tpl:?, t: ?]

PRED[concept: ?, illoc:?, num:?, per:?, recip:?,
reflex:?, tpl:?, t: ?] → VERB[concept:?, illoc: dec
| imp | int, num: pl | sg, per: 1 | 2 | 3, recip: g | n
| o, reflex: g | n | o, tpl: ?, t: past | pres]

There are other possibilities within the NUC in
English sentences once Auxiliary verbs are intro-
duced in clauses, as in:

(27)
 I have written something/ I must write so-

mething / He may come

This second case illustrates the situation in
which there is an Auxiliary verb (AUX, if primary
auxiliary, MODD or MODST if modal auxiliary) in
the NUC, bearing all morphological marking and
leaving, consequently, the VERB AVM housed in
the PRED of this clause empty of such marks. This
can only be encoded in a very different subset of
syntactic rules:

(28)
NUC [asp: ?, concept: ?, illoc:?, num:?, per:?,
recip:?, reflex:?, tpl:?, t: ?] → AUX[asp: pf | pr,
illoc: dec | imp, num: pl | sg, per: 1 | 2 | 3, t:
past | pres] PRED[concept: ?, recip:?, reflex:?,
tpl:?] ‖ MODD[illoc:dec, mod: abl | obl | perm
| psbl | vol, num: pl | sg | null, per: 1 | 2 | 3, null
t: past | pres | null] PRED[concept: ?, recip:?,

reflex:?, tpl:?] || MODST[illoc:dec, num: p | sg,
| null per: 1 | 2 | 3, | null sta: inf | nec | poss |
subj, t: past | pres] PRED[concept: ?, recip:?,
reflex:?, tpl:?]

PRED[concept: ?, recip:?, reflex:?, tpl:?] →
VPAR[concept: ?, recip: g | n | o, reflex: g | n | o,
tpl: ?]] ‖ VING[concept: ?], recip: g | n | o, reflex:
g | n | o, tpl:?]]

Note that in this case, there is a redistribution of
attributes: The AVMS for VPAR and VING retain
only the attributes for the grammatical features
that are encoded in the lexical entry of the co-
rresponding verbal unit:

(29)
 <Category Type="VPAR">

 <Attribute ID="Concept" />
 <Attribute ID="Recip" />
 <Attribute ID="Reflex" />
 <Attribute ID="Template" />

 </Category>

 <Category Type="VING">
 <Attribute ID="Concept" />
 <Attribute ID="Recip" />
 <Attribute ID="Reflex" />
 <Attribute ID="Template" />

 </Category>

The rest of features are saturated in the AVMs of
the auxiliaries.

Example (30) is another case which shows
the complexity of value distribution when there
is a complex verbal group with several AUX cons-
tituents:

(30) I have been writing something

14 Arguably, imperative illocution in English could be analyzed as just involving a certain phonological contour of the clau-
se, as in You write something! However, facts are a bit more complicated since illocutionary force interacts with tense,
and in the case of imperative clauses, they are tenseless.

109

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

The first AUX retains the same values as in (28),
and the second AUX has a specific “pr(ogressive)”
value for the “Aspect” Attribute:

(31)
NUC [asp:?, concept: ?, illoc:?, num:?, per:?, re-
cip:?, reflex:?, tpl:?, t: ?] → AUX[asp: pf , illoc:
dec | imp, num: pl | sg, per: 1 | 2 | 3, t: past |
pres] APAR [asp: pr] PRED[concept: ?, recip:?,
reflex:?, tpl:?]

PRED[concept: ?, recip:?, reflex:?, tpl:?] →
VING [concept: ?], recip: g | n | | , reflex: g | n
| o, tpl:?]]

A different distribution of attributes and values
takes place when there is a combination of one
lexical verbal head plus a number of auxiliary
verbs (AUX and MODD o MODST categories), as in
the clauses in (32):

(32)
 He must be writing a new chapter / He must

have written something / He must have been
writing a new chapter.

The first of the auxiliaries is responsible of bea-
ring the marks for number, person and tense,
plus an additional attribute for either modality
or status.

(33)
NUC [asp: ?, concept: ?, illoc:?, mod: ?, num:?,
per:?, recip:?, reflex:?, tpl:?, t: ?]→MODD[illoc:
dec, mod: abl | obl | perm | psbl | vol, num: pl
| sg | null, per: 1 | 2 | 3, null t: past | pres | null]
AUX [asp: pf | pr] PRED[concept: ?, recip:?, re-
flex:?, tpl:?] ‖ MODD[illoc:dec, mod: abl | obl
| perm | psbl | vol, num: pl | sg | null, per: 1 |
2 | 3, null t: past | pres | null] AUX [asp: pf]
APAR[asp: pr] PRED[concept: ?, recip:?, re-
flex:?, tpl:?]

PRED[concept: ?, recip:?, reflex:?, tpl:?]→
VING[concept: ?], recip: g | n | o, reflex: g | n

| o, tpl: ?]] ‖ VPAR[concept: ?], recip: g | n | o,
reflex: g | n | o, tpl:?]

If the modal verb encodes epistemic modality, as
in (34):

(34)
 He may be writing / He may have written / He

may have been writing now

the rules are:

(35)
NUC [asp: ?, concept: ?, illoc:?, num:?, per:?,
recip:?, reflex:?, sta: ?, tpl:?, t: ?]→MODST
[illoc:dec, num: pl | sg, | null per: 1 | 2 | 3 |
null sta: inf | nec | poss | subj, t: past | pres
| null] PRED[concept: ?, recip:?, reflex:?, tpl:?]
‖ MODST[illoc:dec, num: pl | sg, | null per: 1
| 2 | 3, | null sta: inf | nec | poss | subj, t: past
| pres | null] AUX [asp: pf] APART[asp: pr]
PRED[concept: ?, recip:?, reflex:?, tpl:?]

PRED[concept: ?, recip:?, reflex:?, tpl:?]→
VING[concept: ?, recip: g | n | o, reflex: g | n | o,
tpl:?] ‖ VPAR[concept:?, recip: g | n | o, reflex:
g | n | o, tpl:?]

There are cases in which the combination con-
cerns two modal auxiliaries (one MODD and one
MODST) and, possibly, some aspectual AUX ele-
ment, as in the following example:

(36)
 He may have to write something

The subset of rules for these cases is as follows:

(37)
NUC [concept: ?, illoc:?, mod: ?, num:?, per:?,
recip:?, reflex:?, sta: ?, tpl:?, t: ?]→MODST
[illoc:dec, num: pl | sg, | null per:1 | 2 | 3, |
null sta: inf | nec | poss | subj, t: past | pres |
null] MODD[mod: abl | obl | perm | psbl | vol]
PRED[concept: ?, recip:?, reflex:?, tpl:?]

110

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

PRED[concept: ?, recip:?, reflex:?, tpl:?]→
VERB [concept: ?, recip: g | n | o, reflex: g | n
| o, tpl: ?]

The following examples offer a more complex
combination of two modal verbs and an aspec-
tual AUX form; the introduction of this AUX as-
pectual auxiliary triggers an allomorphic varia-
tion of the head element in PRED, as it must be a
gerund (VING) or a past participle (VPAR):

(38)
 He may have to be writing something/ He

may have to have written something

The parsing rules for these structures are:

(39)
NUC [asp: ?, concept: ?, illoc:?, mod: ?, num:?,
per:?, recip:?, reflex:?, sta: ?, tpl:?, t: ?]→ MO-
DST [illoc:dec, num: p | sg, | null per: 1 | 2 | 3,
| null sta: inf | nec | poss | subj, t: pas | pres |
null] MODD[mod: abl | obl | perm | psbl | vol]
AUX [asp: pf | pr] PRED[concept: ?, recip:?, re-
flex:?, tpl:?]

PRED[concept: ?, recip:?, reflex:?, tpl:?] →
VING[concept: ?], recip: g | n | o, reflex: g | n
| o, tpl: ?] ‖VPAR[concept: ?, recip: g | n | o, re-
flex: g | n | o, tpl:?]

Very infrequent, though not impossible, are the
cases in which there is the full gamut of auxilia-
ries in the NUC, as in (40):

(40)
 He might have to have been writing for the

whole afternoon

The rules show a slight variation with regard to
those in (39), as the rule for NUC includes two
modal auxiliares and two AUX aspectual forms,
and the PRED is either a VING or a VPAR lexical
unit:

(41)
NUC [asp: ?, concept: ?, illoc:?, mod: ?, num:?,
per:?, recip:?, reflex:?, sta: ?, tpl:?, t: ?]→ MO-
DST [illoc:dec, num: pl | sg, | null per: 1 | 2 | 3,
| null sta: inf | nec | poss | subj, t: past | pres |
null] MODD[mod: abl | obl | perm | psbl | vol]
AUX [asp: pf] AUX [asp: pr] PRED[concept: ?,
recip:?, reflex:?, tpl:?]

PRED[concept: ?, recip:?, reflex:?, tpl:?] →
VING[concept: ?, recip: g | n | o, reflex: g | n | o,
tpl: ?] ‖VPAR[concept: ?, recip: g | n | o, reflex:
g | n | o, tpl:?]]

5. Conclusions

This paper provides a first approximation
towards the computational implementation of
the LSC in RRG. Within the framework of ARTE-
MIS, this paper concentrates on the GDE, which
stores three types of rules: lexical, constructional
and syntactic. While lexical and constructional
rules are created automatically, syntactic rules
are manually constructed and are in charge of
providing a parsed syntactic tree following the
LSC distinctions. ARTEMIS is inspired in unifica-
tion approaches and morphosyntactic parsing
is carried out jointly by a set of production rules
and a number of feature unification operations
intended to satisfy the structural and semantic
constraints encoded in the AVMs. Several case
studies, each representing complex grammati-
cal structures within the NUCLEUS layer in the
enhanced LSC, have been discussed in order to
illustrate how the interaction of the components
of the GDE manage to provide an effective des-
cription of such structures.

6. References

Bird, Stephen, Ewan Loper and Edward KLein, 2009:
Natural Language Processing with Python, Bei-

111

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

jing, Cambridge, Farnham, Köln, Sebastopol, To-
kyo: O’Reilly Media Inc.

Boas, Hans C., 2005: “From theory to practice: Fra-
me Semantics and the design of FrameNet” in
Stefan Langer and Daniel schnorBusch (eds.): Se-
mantik im Lexikom, Tübingen: Narr, 129-160.

Boas, Hans C., and Ivan sag (eds.), 2012: Sign-Based
Construction Grammar, Stanford: CSLI.

cortés-rodríguez, Francisco J., 2016: “Towards the
computational implementation of Role and Re-
ference Grammar: Rules for the syntactic parsing
of RRG Phrasal constituents”, Círculo de lingüísti-
ca aplicada a la comunicación 65, 76-108 [http://
www.ucm.es/info/circulo/no65/cortes.pdf].

deBrauwer, Laurent and Fien Van der heyde, 2010:
UML 2.Modelización de objetos, Barcelona: ENI.

díaz-gaLán, Ana C. and M. Carmen Fumero pérez,
2015: “Developing parsing rules within ARTEMIS:
the case of DO auxiliary insertion” in Carlos peri-
ñán-pascuaL and Eva mestre I mestre (eds.): Unders-
tanding Meaning and Knowledge Representa-
tion: From Theoretical and Cognitive Linguistics
to Natural Language Processing, Newcastle: Cam-
bridge Scholars Press, 283-302.

diedrichsen, Elke, 2011: “The theoretical importan-
ce of constructional schemas in RRG” in Wataru
naKamura (ed.): New Perspectives in Role and Refe-
rence Grammar, Newcastle upon Tyne: Cambrid-
ge Scholars Publishing, 168-197.
diedrichsen, Elke, 2014: “A Role and Reference
Grammar Parser for German” in Brian noLan and
Carlos periñán-pascuaL (eds): Language Processing
and Grammars, Amsterdam/Philadelphia: John
Benjamins, 105-142.

FoLey, William A. and Robert D.Jr. Van VaLin, 1984:
Functional Syntax and Universal Grammar, Cam-
bridge: Cambridge University Press.

FiLLmore, Charles J., Christopher R. Johnson and Mi-
riam R. L. petrucK, 2003a: “Background to Frame-
Net”, International Journal of Lexicography 16(3),
235-250.

FiLLmore, Charles J., Miriam R. L. petrucK, Josef rup-
penhoFer and Abby wright, 2003b: “FrameNet in Ac-
tion. The case of Attaching”, International Journal
of Lexicography 16(3), 297-332.

goLdBerg, Adele E., 1995: Constructions: A Cons-
truction Grammar approach to argument struc-
ture, Chicago: University of Chicago Press.

goLdBerg, Adele E., 2006: Constructions at Work.
The Nature of Generalization in Language,
Oxford: Oxford University Press.

guest, Elisabeth, 2009: “Parsing using the Role and
Reference Grammar paradigm” [http://eprints.
leedsbeckett.ac.uk/778/6/Parsing%20Using%20
the%20Role%20and%20Reference%20Gram-
mar%20Paradigm.pdf, accessed 19 February
2016].

mairaL usón, Ricardo, 2012: “La arquitectura de
una base de conocimiento léxico conceptual: im-
plicaciones lingüísticas” in Mabel giammatteo, Lau-
ra Ferrari and Hilda aLBano (eds.): Léxico y Sintaxis,
Mendoza: FFyL, UNCuyo y SAL, 183-210 [http://
ffyl.uncu.edu.ar/spip.php?article3638].

mairaL usón, Ricardo, Lilian guerrero and Carlos
gonzáLez (eds.), 2012: El funcionalismo en la teoría
lingüística. La Gramática del Papel y la Referen-
cia. Introducción, avances y aplicaciones, Madrid:
Akal.

mairaL usón, Ricardo, Carlos periñán-pascuaL and
M. Beatriz pérez caBeLLo de aLBa, 2012: “La repre-
sentación léxica. Hacia un enfoque ontológico”
in Ricardo mairaL usón, Lilian guerrero and Carlos
gonzáLez (eds.): El funcionalismo en la teoría lin-
güística. La Gramática del Papel y la Referencia.

112

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

Introducción, avances y aplicaciones, Madrid:
Akal, 85-102.

mairaL usón, Ricardo and Carlos periñán-pascuaL,
2014: “Representing Constructional Schemata in
FunGramKB Grammaticon” in Jens FLeischhauer,
Anja Latrouite and Rainer osswaLd (eds.): Exploring
the Syntax-Semantics Interface, Düsseldorf: Düs-
seldorf University Press.

mairaL usón, Ricardo, and Francisco J. ruiz de
mendoza, 2008: “New challenges for lexical re-
presentation within the Lexical-Constructional
Model”, Revista Canaria de Estudios Ingleses
57, 137-158.
mairaL usón, Ricardo, and Francisco J. ruiz de men-
doza, 2009: “Levels of description and explanation
in meaning construction” in Christopher ButLer
and J. martín arista (eds.): Deconstructing Cons-
tructions, Amsterdam/Philadelphia: John Benja-
mins, 53-198.

noLan, Brian, and Carlos periñán-pascuaL (eds.), 2014:
Language Processing and Grammars, Amster-
dam: John Benjamins.

noLan, Brian, and Yasser saLem, 2011: “UniArab;:
RRG Arabic-to-English machine translation” in
Wataru naKamura (ed.): New Perspectives in Role
and Reference Grammar, Newcastle upon Tyne:
Cambridge Scholars, 312-346.

oVchinniKoVa, Ekaterina, Laure Vieu, Alessandro oL-
tramari, Stephano Borgo and Theodore aLexandroV,
2010: “Data-driven ontological analysis of Frame
Net for Natural Language Reasoning”, Procee-
dings of the 7th Conference on International
Language Resources and Evaluation (LREC’10),
Valetta (Malta) [http://ovchinnikova.me/papers/
LREC_OOVBA_final.pdf].

paVey, Emma, 2010: The Structure of Language. An
Introduction to Grammatical Analysis, Cambrid-
ge: Cambridge University Press.

periñán-pascuaL, Carlos, 2013: “Towards a model of
constructional meaning for natural language un-
derstanding” in Brian noLan and Elke diedrichsen
(eds.): Linking Constructions into Functional Lin-
guistics: The Role of Constructions in a Functio-
nal Grammar, Amsterdam and Philadelphia: John
Benjamins, 205-230

periñán-pascuaL, Carlos, and Francisco arcas, 2007:
“Cognitive modules of an NLP knowledge base
for natural language understanding”, Procesa-
miento del Lenguaje Natural 39, 197-204.
periñán-pascuaL, Carlos, and Francisco arcas, 2010:
“The Architecture of FungramKB”, Proceedings
of the 7th International Conference on Language
Resources and Evaluation, Malta: European Lan-
guage Resources Association, 2667-2674.
periñán-pascuaL, Carlos, and Francisco arcas, 2014:
“The implementation of the FunGramKB CLS
Constructor in ARTEMIS” in Carlos periñán-pascuaL
and Brian noLan (eds.): Language Processing and
Grammars, Amsterdam/Philadelphia: John Benja-
mins,165-196.

periñán-pascuaL, Carlos, and Ricardo mairaL usón,
2009: “Bringing Role and Reference Grammar to
natural language understanding”, Procesamien-
to del Lenguaje Natural 43, 265-273.
periñán-pascuaL, Carlos, and Ricardo mairaL usón,
2012: “La dimensión computacional de la Gramá-
tica del Papel y la Referencia: la estructura lógica
conceptual y su aplicación en el procesamiento
del lenguaje natural” in Ricardo mairaL usón, Lilian
guerrero and Carlos gonzáLez (eds.): El funcionalis-
mo en la teoría lingüística. La Gramática del Pa-
pel y la Referencia. Introducción, avances y apli-
caciones, Madrid: Akal, 333-348.

ruiz de mendoza, Francisco J., 2013: “Meaning cons-
truction, meaning interpretation and formal ex-
pression in the Lexical Constructional Model”
in Brian noLan and Elke diedrichsen (eds.): Linking
Constructions into Functional Linguistics, Am-
sterdam/Philadelphia: John Benjamins, 231-270.

113

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

ruiz de mendoza, Francisco J., and Alicia gaLera,
2014: Cognitive modelling: A Linguistic Perspec-
tive, Amsterdam/Philadelphia: John Benjamins.

ruiz de mendoza, Francisco J., and Ricardo mairaL
usón, 2007: “Levels of semantic representation:
Where lexicon and grammar meet”, Interlingüís-
tica 17, 26-47.

rumBaugh, James, Ivar JacoBson and Grady Booch,
1999: The Unified Modeling Language Reference
Manual, Reading MA: Addison-Wesley.

sag, Ivan. A., Thomas wasow and Emily M. Bender,
2003: Syntactic Theory: Formal Introduction,
Stanford: CSLI Publications.

saLem, Yasser, Arnold hensman and Brian noLan,
2008: “Towards Arabic to English machine trans-
lation”, ITB Journal 17, 20-31.

shen, Dan, and Mirella Lapata, 2007: “Using Seman-
tic Roles to Improve Question Answering”, Pro-
ceedings of the 2007 Joint Conference on Empi-
rical Methods in Natural Language Processing
and Computational Natural Language Learning
(EMNLP-CoNLL), 12-21 [https://www.aclweb.org/
anthology/D/D07/D07-1002.pdf].

Van VaLin, Robert D. Jr., 2005: Exploring the Syntax-
Semantics Interface, Cambridge: Cambridge Uni-
versity Press.
Van VaLin, Robert D. Jr., 2008: “RPs and the nature
of lexical and syntactic categories in Role an Re-
ference Grammar” in Robert D. Jr. Van VaLin (ed): In-
vestigations of the Syntax-Semantics-Pragmatics
Interface, Amsterdam/Philadelphia: John Benja-
mins, 161-178.
Van VaLin, Robert D. Jr., 2013: “Lexical representa-
tion, co-composition, and linking syntax and se-
mantics” in James pusteJoVsKy, Pierrette BouiLLon,
Itoshi isahara, Kyoko KanzaKi and Chungmin Lee
(eds.), Advances in the Generative Lexicon, Dor-
drecht: Springer, 67-108.

Van VaLin, Robert D. Jr., and Ricardo mairaL usón,
2014: “Interfacing the Lexicon and an Ontology in
a Linking Algorithm” in M. Ángeles gómez, Francis-
co J. ruiz de mendoza and Francisco gonzáLVez-garcía
(eds.): Theory and Practice in Functional-Cogniti-
ve Space, Amsterdam: John Benjamins, 205-228.

7. Appendixes
7.1. Appendix 1: List of abbreviations

AAJ Argument-adjunct
ADV Adverb
ADJ Adjunct
APAR Auxiliary (participle)
ARG Argument
AUX Auxiliary verb
AVM Attribute-Value Matrix
CL Clause
CONSTR-L1 Level 1 Construction
GDE Grammar Development
 Environment
LDP Left detached Position
LSC Layered Structure of the Clause
MODD Modal verb (deontic)
MODST Modal verb (epistemic)
N Noun
NUC Nucleus
NUC-S Secondary Nucleus
XP Phrase
PER Periphery
PoCS Post-Core Slot
POS Part of speech
PP Prepositional Phrase
PrCS PreCore Slot
PreC-L1 Pre L1 Construction Slot
PRED Predicate
RDP Right Detached Position
RRG Role and Reference Grammar
S Sentence
VING Verb (gerund form)
VPAR Verb (participle)

114

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

7.2. Appendix 2: SYNTACTIC RULES

The Nucleus

NUC [asp: ?, concept: ?, illoc:?, num:?, per:?, recip:?,
reflex:?, tpl:?, t: ?] →
PRED[concept: ?, illoc:?, num:?, per:?, recip:?, re-
flex:?, tpl:?, t: ?] ‖ AUX[asp: pf | pr, illoc: dec | imp,
num: pl | sg, per: 1 | 2 | 3, t: past | pres] PRED[concept:
?, recip:?, reflex:?, tpl:?] ‖ MODD[illoc:dec, mod: abl
| obl | perm | psbl | vol, num: pl | sg | null, per: 1 | 2 |
3, null t: past | pres | null] PRED[concept: ?, recip:?,
reflex:?, tpl:?] || MODST[illoc:dec, num: pl | sg, | null
per: 1 | 2 | 3, | null sta: inf | nec | poss | subj, t: past
| pres] PRED[concept: ?, recip:?, reflex:?, tpl:?] |
AUX[asp: pf , illoc: dec | imp, num: pl | sg, per: 1 |
2 | 3, t: past | pres] APAR [asp: pr] PRED[concept:
?, recip:?, reflex:?, tpl:?] ‖ MODD[illoc: dec, mod:
abl | obl | perm | psbl | vol, num: pl | sg | null,
per: 1 | 2 | 3, null t: past | pres | null] AUX [asp:
pf | pr] PRED[concept: ?, recip:?, reflex:?, tpl:?] ‖
MODD[illoc:dec, mod: abl | obl | perm | psbl | vol,
num: pl | sg | null, per: 1 | 2 | 3, null t: past | pres |
null] AUX [asp: pf] APAR[asp: pr] PRED[concept:
?, recip:?, reflex:?, tpl:?] ‖ MODST [illoc:dec, num: pl
| sg, | null per: 1 | 2 | 3, | null sta: inf | nec | poss |
subj, t: past | pres] PRED[concept: ?, recip:?, re-
flex:?, tpl:?] ‖ MODST[illoc:dec, num: pl | sg, | null
per: 1 | 2 | 3, | null sta: inf | nec | poss | subj, t: past |
pres] AUX [asp: pf] APART[asp: pr] PRED[concept:
?, recip:?, reflex:?, tpl:?] ‖ MODST [illoc:dec, num: pl
| sg, | null per: 1 | 2 | 3, | null sta: inf | nec | poss
| subj, t: past | pres | null] MODD[mod: abl | obl
| perm | psbl | vol] PRED[concept: ?, recip:?, re-
flex:?, tpl:?] ‖NUC [asp: ?, concept: ?, illoc:?, mod: ?,
num:?, per:?, recip:?, reflex:?, sta: ?, tpl:?, t: ?]→ MO-
DST [illoc:dec, num: pl | sg, | null per: 1 | 2 | 3, |
null sta: inf | nec | poss | subj, t: past | pres | null]
MODD[mod: abl | obl | perm | psbl | vol] AUX [asp:
pf | pr] PRED[concept: ?, recip:?, reflex:?, tpl:?] |
MODST [illoc:dec, num: pl | sg, | null per: 1 | 2 | 3, |
null sta: inf | nec | poss | subj, t: past | pres | null]
MODD[mod: abl | obl | perm | psbl | vol] AUX [asp:
pf] AUX [asp: pr] PRED[concept: ?, recip:?, reflex:?,
tpl:?]

The Predicate

PRED[concept: ?, illoc:?, num:?, per:?, recip:?, re-
flex:?, tpl:?, t: ?] → VERB [concept:?, illoc: dec | imp
| int, num: pl | sg, per: 1 | 2 | 3, recip: g | n | o, reflex:
g | n | o, tpl: ?, t: past | pres]

PRED[concept: ?, recip:?, reflex:?, tpl:?] →
VPAR[concept: ?, recip: g | n | o, reflex: g | n | o, tpl:
?]] ‖ VING[concept: ?], recip: g | n | o, reflex: g | n |
o, tpl: ?]]

PRED[concept: ?, recip:?, reflex:?, tpl:?]→ VERB
[concept: ?, recip: g | n | o, reflex: g | n | o, tpl: ?]

7.3. Appendix 3: ATTRIBUTE-VALUE MA-
TRIXES (AVMs)

Parts of Speech (POSs)
 Layer: PREDICATE

<Category Type="PRED">
<Attribute ID="Concept" />
<Attribute ID="Illoc" />
<Attribute ID="Num" />
<Attribute ID="Per" />
<Attribute ID="Recip" />
<Attribute ID="Reflex " />
<Attribute ID="Template" />
<Attribute ID="Tense" />

</Category>

<Category Type="VERB">
<Attribute ID="Concept" />
<Attribute ID="Illoc" />
<Attribute ID="Num" />
<Attribute ID="Per" />
<Attribute ID="Recip" />
<Attribute ID="Reflex" />
<Attribute ID="Template" />
<Attribute ID="Tense" />

</Category>

<Category Type="VPAR">
<Attribute ID="Concept" />

115

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

<Attribute ID="Recip" />
<Attribute ID="Reflex" />
<Attribute ID="Template" />

</Category>

<Category Type="VING">
<Attribute ID="Concept" />
<Attribute ID="Recip" />
<Attribute ID="Reflex" />
<Attribute ID="Template" />

</Category>

Layer: NUCLEUS

<Category Type="NUC">
<Attribute ID="Aspect" />
<Attribute ID="Concept" />
<Attribute ID="Illoc" />
<Attribute ID="Mod" />
<Attribute ID="Num" />
<Attribute ID="Per" />
<Attribute ID="Recip" />
<Attribute ID="Reflex" />
<Attribute ID="Sta" />
<Attribute ID="Template" />
<Attribute ID="Tense" />

</Category>

<Category Type="AUX">
<Attribute ID="Aspect" />
<Attribute ID="Illoc" />
<Attribute ID="Num" />
<Attribute ID="Per" />
<Attribute ID="Syn” />
<Attribute ID="Tense" />

</Category>

<Category Type="APAR">
<Attribute ID="Aspect"
<Attribute ID="Syn " />

</Category>

<Category Type="MODD ">
<Attribute ID="Illoc" />

<Attribute ID="Mod" />
<Attribute ID="Num" />
<Attribute ID="Per" />
<Attribute ID="Pol" />
<Attribute ID="Syn "
<Attribute ID="Tense" />

</Category>

<Category Type="MODST ">
<Attribute ID="Illoc" />
<Attribute ID="Num" />
<Attribute ID="Per" />
<Attribute ID="Pol" />
<Attribute ID="Sta" />
<Attribute ID="Syn "
<Attribute ID="Tense" />

</Category>

Attributes

<Attribute ID="Aspect" obl="*" num="s">
<Value>?asp</Value>
<Value Tag="indefinite">ind</Value>
<Value Tag="imperfective">imp</Value>
<Value Tag="perfect">pf</Value>
<Value Tag="progressive">pr</Value>

</Attribute>

<Attribute ID="Concept" obl="*" num="s">
<Value>[FIND: core > concept > concept |
CHECK: %\w*]</Value>

</Attribute>

<Attribute ID="Illoc " obl="*" num="1">
<Value>?illoc</Value>
<Value Tag=”declarative” >dec< /Value>
<Value Tag=”interrogative” >int< /Value>
<Value Tag=”imperative” >imp< /Value>

</Attribute>

<Attribute ID="Modality " obl="*" num="1">
<Value>?mod </Value>
<Value>ability>abl</Value>
<Value>obligation>obl</Value>

116

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

<Value> permission>perm</Value>
<Value> possibility>psbl</Value>
<Value> volition>vol</Value>

</Attribute>

<Attribute ID="Num" obl="*" num="s">
<Value>?n</Value>
<Value>pl</Value>
<Value>sg</Value>
<Value>null</Value>

</Attribute>

<Attribute ID="Per" obl="*" num="s">
<Value>1</Value>
<Value>2</Value>
<Value>3</Value>

</Attribute>

<Attribute ID="Recip" obl="*" num="1">
<Value Tag="grammatical">g</Value>
<Value Tag="never">n</Value>
<Value Tag="optional">o</Value>

</Attribute>

<Attribute ID="Reflex" obl="*" num="1">
<Value Tag="grammatical">g</Value>
<Value Tag="never">n</Value>
<Value Tag="optional">o</Value>

</Attribute>

<Attribute ID="Template" obl="+" num="s">
<Value>?tpl</Value>
<Value>[FIND: constructicon1 > construc >
code]</Value>

</Attribute>

<Attribute ID="Tense" obl="*" num="1">
<Value>?t</Value>
<Value>past</Value>
<Value>pres</Value>

</Attribute>

<Attribute ID="Status " obl="*" num="1">
<Value>?sta</Value>
<Value>inference>inf</Value>

<Value>necessity>nec</Value>
<Value>possibility>poss</Value>
<Value>subjunctive>subj</Value>

</Attribute>

117

ONOMÁZEIN 34 (diciembre de 2016): 86 - 117
Francisco Cortés Rodríguez y Ricardo Mairal-Usón

Building an RRG computational grammar

7.4. Appendix 4: FunGramKB

