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In the category learning literature, similarity models have monopolized a good deal of research. The prototype and 

exemplar models are both based on the idea that people represent the structure of categories and category instances 

in the physical world in a mental similarity space. However, evidence for these models comes mainly from paradigms 

that provide subjects with deterministic feedback (i.e., exemplars belong to their corresponding categories with 

probability = 1). There is evidence that results obtained with deterministic feedback paradigms may not generalize 

well under probabilistic feedback conditions (i.e., where exemplars belong to their corresponding categories with 

probability less than 1). In this current work, we also suggest that probabilistic feedback may better reflect natural 

conditions, which is another important reason to pursue probabilistic feedback research. Thus, in the current work 

we set up a category learning experiment with probabilistic feedback and use it to evaluate different models. In 

addition to the two similarity models discussed above, we also use an associationist model that does not rely on the 

similarity construct. To compare our three models, we rely on computational modeling, which is a standard way of 

model comparison in cognitive psychology. Our results show that our associationist model outperforms similarity 

models on all our model evaluation measures. After presenting our results, we discuss why the similarity-based 

models fail, and also suggest some future lines of research that are possible using probabilistic feedback procedures. 
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Los modelos basados en similitud han dominado la literatura de aprendizaje de categorías. El modelo de prototipos 

y el de ejemplares se basan en la idea de que las personas representan los objetos en el mundo real en un espacio de 

similitud subjetiva. Sin embargo, la evidencia a favor de estos modelos viene predominantemente de paradigmas que 

usan retroalimentación determinista (i.e., los ejemplares pertenecen a sus categorías correspondientes con una 

probabilidad igual a 1). Hay evidencia de que los resultados obtenidos con retroalimentación determinista podrían 

no generalizarse bajo condiciones de retroalimentación probabilista (i.e., cuando los ejemplares pertenecen a sus 

respectivas categorías con probabilidad menor a 1). En el presente trabajo, también sugerimos que la 

retroalimentación probabilística podría reflejar mejor las condiciones naturales, lo que es otra buena razón para 

desarrollar investigación con retroalimentación probabilística. En consecuencia, en el presente trabajo 

implementamos un experimento de aprendizaje de categorías con retroalimentación probabilística y lo usamos para 

evaluar distintos modelos. Además de los dos modelos de similitud discutidos más arriba, usamos también un modelo 

asociacionista que no depende del constructo de similitud. Para comparar nuestros modelos, usamos modelamiento 

computacional, que es un modo estándar para comparar modelos en psicología cognitiva. Nuestros resultados 

muestran que el modelo asociacionista supera a los modelos basados en similitud en todas las medidas de evaluación. 

Luego de presentar nuestros resultados, discutimos por qué fallan los modelos de similitud y también sugerimos 

líneas futuras de investigación que son posibles al usar procedimientos con retroalimentación probabilista. 

Palabras clave: aprendizaje de categorías, categorización, aprendizaje probabilístico, modelos cognitivos 

computacionales 
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Categorization is a crucial cognitive ability that has drawn attention of psychologists concerned with how 

the human mind classifies different classes of objects or events into subsequent categories. This ability seems 

vital for human survival and adaptation to the environment (Seger & Miller, 2010). Although categorization 

is a broad cognitive ability which impacts many different aspects of the everyday life (e.g., deciding if a pop-

up window is a virus or an add), we focus here on the specific process of how people acquire categories. This 

sub-field within categorization research has been referred to as category learning. In most of category 

learning studies (Ashby & Maddox, 2005; 2011), researchers focus on how people learn, represent and select 

different categories. In those studies, a typical procedure is that subjects receive extensive classification 

training and are then tested on how well they learned the trained categories (i.e., generalization of learning).  

However, most of category learning experiments have relied on deterministic feedback (i.e., the feedback 

signal assumes no uncertainty relative to how exemplars are classified) (Marchant & Chaigneau, 2021). The 

literature focusing on how people acquire categories under conditions of uncertainty is sparse (Knowlton et 

al., 1994; Lagnado et al., 2006; Little & Lewandowsky, 2009a; 2009b; Meeter et al., 2008). Here, we deep dive 

on why categorization under conditions of uncertainty might be important to study. To that end, we 

implemented a novel category learning experiment which allowed us to directly manipulate classification 

probabilities. Furthermore, we tested two famous categorization formal models (i.e., the similarity-based 

models) alongside with a novel model of associative learning. By reporting these novel experimental results, 

we expect to contribute to elucidating how people acquire categories in the context of uncertainty. 

Categorization under Uncertainty 

To address the issue of classification under uncertainty, we implemented a category learning experiment 

that trained subjects by giving them probabilistic feedback. But, why use probabilistic routines on training? 

We can think of at least three reasons for why designing category learning tasks with probabilistic feedback 

may be important: ecological validity, task dependency of experimental results, and differences in strategies 

and brain mechanisms that underlie those strategies. We discuss them next. 

As mentioned above, the most common type of feedback in category learning experiments is deterministic 

feedback (DF; Ashby & Ell, 2001; Nosofsky et al., 1994). In DF, each feature combination (i.e., exemplar) is 

always a member of one of the categories. For example, in a DF environment, features on an exemplar like 

“has four legs”, “barks” and “has fur” is always a member of the “dog” category. Consequently, subjects’ 

performance increases during training towards some asymptotic performance level (i.e., perfect or close to 

perfect performance). In contrast, probabilistic feedback (PF) has been used much less frequently (Ashby & 

Gott, 1988; Gluck & Bower, 1988; Little & Lewandowsky, 2009a; 2009b; and in the Weather Prediction Task, 

Knowlton et al., 1994; Meeter et al., 2008). In PF, each exemplar (i.e., feature combination) belongs to a 

category with a probability less than 1.0. Following our previous example, an exemplar that “barks”, “has 

four legs” and “has fur” is member of the “dog” category only on 80 % of the trials. In contrast to DF, training 

under PF conditions continue to provide corrective feedback even when subjects achieve asymptotic 

performance, which never approaches perfect performance. Elsewhere (Marchant & Chaigneau, 2021), we 

have argued that PF should be used more frequently, given that probabilistic conditions may be more 

representative of natural learning environments where different sources of feedback may offer inconsistent 

feedback (e.g., think of being taught the same subject by different teachers; Little & Lewandowsky, 2009a; 

Meeter, et al., 2008; Lagnado, et al., 2006) and that at least some empirical findings in category learning may 

be conditional on using deterministic feedback. For example, inter-feature correlations have for a long time 

been considered an important part of conceptual representations (Hoffman & Rehder, 2010; Ell et al., 2017). 

It is generally accepted that subjects in category learning experiments tend not to learn inter-feature 

correlations. For inter-feature correlations to be learned, inference tasks have to be used (Chin-Parker & 

Ross, 2002; Yamauchi et al., 2002). However, when probabilistic feedback has been used with classification 

procedures, evidence has been found that subjects do learn inter-feature correlations (Little & Lewandowsky, 

2009a). Consequently, it is possible that categorization phenomena being uncovered by using DF fail to 

generalize under PF conditions. Given these concerns, PF should be used more broadly. 

Another reason for using PF is that it seems to induce a different strategy and brain mechanisms than 

DF. It has been shown that traditional category learning procedures with DF allow subjects to easily 

elaborate a form of logical declarative rule through explicit reasoning and hypothesis testing (Ashby et al., 

1998; Ashby & Valentin, 2017). Because feedback is consistently linked to the desired response, subjects can 

discover the logical rule that allows them to categorize and generalize accurately (e.g., “if feature x is present, 
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then the exemplar belongs to category A”; Ashby & Valentine, 2018). In contrast, when experimental 

scenarios increase in uncertainty (i.e., when the desired response is probabilistic), people seem to rely less on 

a rule-based declarative strategy. This is precisely what has been found in research using the Weather 

Prediction Task (WPT) with amnesic patients (Knowlton et al., 1994; Gluck et al., 1996). The WPT is a 

probabilistic feedback task in which subjects receive cues that are probabilistically associated with the 

outcome (i.e., rain or shine), and have to learn to probabilistically use them to predict the weather. In that 

study, amnesic patients performed normally relative to a control group in a first set of 50 training trials but 

performed significantly worse than controls during the subsequent trials. The explanation for this pattern of 

results is that, while controls were able to find the rule that allowed categorization by trial 50 and to use it 

during the subsequent trials, amnesic patients were not able to hold in memory an explicit rule and therefore 

failed relative to controls. In contrast, patients with Basal Ganglia dysfunction such as Parkinson’s and 

Huntington's disease showed an early impairment during the WPT (Knowlton et al., 1996; Knowlton et al., 

1996). Because the Basal Ganglia are widely thought to implement procedural learning (Lawrance et al., 

1998; Shohamy et al., 2008; Seger & Miller, 2010), this whole pattern of results is consistent with the idea 

that probabilistic feedback promotes a procedural route to categorization, in contrast to deterministic 

feedback, which promotes a declarative or explicit route. 

Computational Models of Categorization  

Like in many other areas of cognitive psychology (e.g., memory, attention, learning, reasoning and 

categorization), researchers in category learning have implemented computational models (Kruschke, 2008; 

Richler & Palmeri, 2014). Computational models of cognition have emerged as a response to the necessity of 

a mathematical formalization that represents the functionality of the cognitive system. By using these, 

researchers have been able to make predictions, to contrast different models, and to modify them to improve 

their explanatory power (e.g., Lewandowsky & Farrell, 2011).  

As discussed in Wills and Pothos (2012), having computational or mathematical implementations affords 

advantages. By comparing competing models' ability to fit the empirical data, rigorous comparisons can be 

made. By formalizing theories, hypotheses can be unambiguously formulated (i.e., in contrast to purely verbal 

theories). Because models are sometimes complex, they produce behavioral predictions that are not evident 

at first sight, thus providing deeper insights into empirical phenomena. In what follows next, we discuss 

three models of category learning, together with their mathematical and algorithmic implementations, all of 

which allows the model fitting results we report in the current work. Because similarity-based models 

(discussed next) have been dominant in the literature for the past 50 years, in our work we wanted to test 

their performance in PF conditions, and to contrast it with an associationist model. In the next section, we 

discuss the models, beginning with similarity-based models of category learning. 

Similarity-Based Models 

Most of the currently dominant categorization models rely on the similarity assumption. The construct 

of similarity has a long and important tradition in cognitive psychology, traceable at least to the Gestalt 

movement. In short, similarity assumes that when two items are similar, the distance between them in a 

hypothetical psychological space is narrowed. In contrast, when both items are dissimilar, the psychological 

space between them is expanded (Shepard, 1987; Nosofsky, 1984; 1986) (e.g., a “Golden Retriever” is more 

similar to a “Beagle” than any of them is to a “Coyote”).  

Interestingly for us, Kruschke (2008) points out that categorization models require at least three 

specifications: (1) the representation of internal category knowledge, (2) the process of matching a to-be-

classified item with the subjective representation of the category and (3) a process of choice-response over a 

category. As it will become clear next, the matching process between item and category in the following 

models is a similarity-based process.  

Exemplar Model 

Exemplar models assume that people’s category representations are specific memory-traces of individual 

items belonging to that category. Consequently, when subjects are asked to categorize an item x into category 

A, the theory assumes that a comparison between item x and all previous experienced items is computed 

through a similarity-based process.  
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The most prominent computational model of the exemplar theory is Nosofsky’s Generalized Context 

Model (GCM, Nosofsky, 1984) which is a generalization of Medin and Schaffer’s Context Model (1978). The 

GCM assumes that selective attention guides the similarity-based process, meaning that an x item’s most 

attended to (or relevant) attributes are the ones which contribute the most to the perceived similarity. 

Additionally, similarity is bound to change through the learning period due to the continuous optimization 

of the attentional resources (Nosofsky, 2011). 

The discussed above ideas allow formalizing the distance between an item x to exemplar y as shown in 

the following equation: 

𝑑(𝑥, 𝑦) = ∑(𝑤𝑖|𝑥𝑖 − 𝑦𝑖|
𝑟)1/𝑟

𝑚

𝑖=1

 
(1) 

Where 𝑑(𝑥, 𝑦) denotes the psychological distance, xi represents the value of item x on the i-th dimension 

(or attribute) of its m binary dimensions (m = 3 in the following experiment), and yi represents the individual 

training exemplar on its i-th binary dimensions. The attentional parameter is represented by wi, meaning 

that attention can be allocated to each of stimulus dimension (with the constraint that there is a fixed total 

amount of attention to be allocated; in our computational modeling, this means that the total sum of all 

attentional coefficients sums to 1). The original version of the GCM uses an exponential parameter r which 

is set equal to 1 (city-block metric) when perceptual separable stimuli are used in the experiment, which is 

the case of this study. Consequently, the similarity of item x to category A is formalized as:  

𝑆𝐴(𝑥) = ∑ exp (−𝑐 𝑑(𝑥, 𝑦))

𝑦∈𝐴

 

(2) 

Where 𝑆𝐴(𝑥)denotes similarity. The sensitivity scale parameter c corresponds to an exponential decaying 

function of distance. Thus, when the distance is 0, then the similarity is 1. Finally, to obtain the predicted 

probability of the category A given each item x, Luce’s choice axiom:  

𝑝(𝐴|𝑥) = 𝑆𝐴(𝑥)𝛾 𝑆𝐴(𝑥)𝛾⁄ + 𝑆𝐵(𝑥)𝛾 (3) 

Where, the similarity to category A is divided by the summed similarity to category A and B, thus 

bounding p(A|x) to the 0 to 1 range. Note, that Ashby & Maddox (1993) suggested a 𝛾 parameter which 

controls the deterministic course of responses. This means that when 𝛾 > 1 subjects tend to respond more 

deterministically, on the contrary, when 𝛾 < 1 subjects tend to respond more probabilistically. Gamma 

achieves this by essentially warping the equation’s output, moving it from a flat straight line to progressively 

closer to a step function. 

Prototype Model 

Prototype models assume that people create an abstract prototypical representation of the category; a 

kind of central tendency of all previous experienced item attributes. When subjects are asked to categorize 

an item x into category A, the theory assumes that people compare item x with the prototype of category A 

by means of a similarity-based process. 

Nosofsky and Zaki (2002) elaborated a Multiplicative Prototype Model (MPM) which enables direct 

comparison with the GCM. The MPM assumes a multiplicative response choice equal to the GCM. Formally: 

𝑆𝐴(𝑥) = exp [−𝑐 ∑(𝑤𝑖|𝑥𝑖 − 𝑝𝑟𝑜𝑡𝑜𝐴𝑖|𝑟)1/𝑟

𝑚

𝑖=1

] 
(4) 

Where 𝑝𝑟𝑜𝑡𝑜𝐴𝑖 is the prototype of category A. This formulation integrates in the same equation the 

distance metric, which is similar to eq. 1 and the similarity metrics which is similar to eq. 2. Note that to 

obtain p(category|item), MPM uses the same choice axiom showed in eq. 3, including a 𝛾 parameter. 
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Associative Learning 

Adaptive Linear Filter 

The Adaptive Filter model (Widrow & Hoff, 1960) views category learning as a task where two alternative 

responses (A or B category) are reinforced based on how features are combined. Note that this is consistent 

with the idea that the Basal Ganglia are involved in procedural category learning, as previously discussed 

(Ashby & Ennis, 2006). Rather than creating a similarity space where instances are represented, the 

Adaptive Filter model assumes that people update coefficients for each feature (f1, f2, f3, …, fk), such that 

classification errors relative to feedback are minimized. The aforementioned coefficients are more formally 

the Least Mean Square (LMS) correlation coefficients relating each feature with the classification criterion 

that is operative during an experiment. Importantly, the model assumes that learning occurs only when 

errors are made (i.e., when corrective feedback is received; Rescorla & Wagner, 1972; Schultz, 1998; Little & 

Lewandowsky, 2009a). Widrow and Hoff (1960; see also Widrow & Kamenetsky, 2003) show that the 

algorithm in eq. (5) converges to the LMS correlation coefficients relating each feature with the classification 

criterion. Gluck and Bower (1988) tested this aspect of the theory and reported data consistent with people’s 

error correcting mechanism being able to converge toward a LMS solution. Eq. (5) below shows the LMS 

learning algorithm. 

𝑤𝑗+𝑖
𝑖 = 𝑤𝑗

𝑖 + 𝑛(𝑑 − 𝑟)𝑥𝑖 (5) 

Where, w(j+1) is the adjusted weight for feature fi due to the performance in the previous trial, wj is the 

weight for that same feature in the immediately preceding trial, n is a learning rate, d is the desired response 

for the preceding trial, r is the actual response provided by the subject for the exemplar received in the 

preceding trial, and x is the state of feature fi during the preceding trial. 

As a result of learning, subjects’ responses will be a function of a linear combination of features states 

and their corresponding weights, as shown in the parenthetical term in eq. (6). That linear equation is 

deterministic. As discussed in Gluck and Bower (1988), a simple model that relates coefficients to 

categorization probabilities is the logistic probability function (eq. (6)). 

𝑝(𝐴) = 1 [1 + 𝑒−𝑔(𝛽0+𝛽1𝑓1+𝛽2𝑓2+𝛽3𝑓3+⋯+𝛽𝑘𝑓𝑘)]⁄  (6) 

Where the betas are the aforementioned correlation coefficients, the f’s are each of the features that 

describe exemplars, which may be in state either 1 or -1, and g is a parameter that allows representing 

different sensitivities with which the linear term is transformed into categorization probability (i.e., the slope 

of the sigmoid function). Note that g in eq. (6) behaves similarly to the 𝛾 parameter in eq. (3). 

Method 

In the experiment, we report how participants learned to classify eight exemplars constructed by 

combining three features (f1, f2, f3) that could adopt one of two possible states. Importantly, though feedback 

was provided, it did not imply a consistent exemplar to category classification (i.e., probabilistic feedback was 

used). Because we were interested in the learning process (i.e., how people acquire categories), we used 

artificial categories with novel features to prevent participants’ prior knowledge from impacting results.  

Design and Materials 

The design was a 3 (feature association strength: f1 > f2 > f3, f2 > f3 > f1, f3 > f1 > f2) x 3 (features: f1, f2, f3) 

mixed design, with the last being the repeated measures factor. Stimuli were constructed such that the 

association between each feature and the classification criterion followed the order shown above. Also, 

stimuli were constructed as to reflect all possible combinations of the 3 features (f1, f2, f3) that could assume 

one of two possible states (i.e., “ceremonial symbols”, see Figure 1; similar to those used in Rehder et al., 

2009). With these 3 features, there are 8 possible feature combinations or exemplars (23 = 8; see Table 1). 

By design, only two features contributed to classification in our experiment (i.e., the third feature was 

always irrelevant), and an exemplar was never completely associated with one of the categories (i.e., neither 

A nor B). Exemplars 1 and 2 in Table 1 belonged to category A with p(A) = .9 (i.e., they belonged to category 

B with p(B) = 1 - p(A) = .1). Exemplars 3 and 4 belonged to category A with p(A) = .7 (i.e., they belonged 
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to category B with p(B) = 1 - p(A) = .3). The category boundary was symmetric, such that for exemplars 5 

and 6 p(B) = .7 (and p(A) = .3), and for exemplars 7 and 8 p(B) = .9 and p(A) = .1) (see Table 2). Importantly, 

these probabilities defined the way in which participants would receive corrective PF (e.g., p(A) = .9 means 

that a subject that consistently responded A to the corresponding exemplar, would receive a “correct” 

feedback on 90 % of those trials, but “incorrect” feedback on 10 % of those trials). Exemplars constructed as 

described above resulted in features that show different degrees of association with the classification criterion 

(i.e., r = .6, r = .2, r = 0; see Table 3). 

Figure 1 

Complete Experiment Set-Up 

 

 
Note. (A) Prototype ceremonial symbol for Family Z. (B) Prototype ceremonial symbol 

for Family M. Note that other exemplars are created by distorting these two 

prototypes. (C) Experimental procedure consisting of 240 trials. 

Table 1  

Every Exemplar is Shown as an Effect Coded 

Combination of Binary Valued Features (f1, f2 and f3) 

 

Exemplar f1 f2 f3 

E1  1  1  1 

E2  1  1 -1 

E3  1 -1  1 

E4  1 -1 -1 

E5 -1  1  1 

E6 -1  1 -1 

E7 -1 -1  1 

E8 -1 -1 -1 

Note. Features are uncorrelated to each other. 
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Table 2 

Classification Probability to Category A for each 

Condition by every Exemplar 

 

Exemplar 
Condition 1 

f1>f2>f3 p(A) 

Condition 2 

f2>f3>f1 p(A) 

Condition 3 

f3>f1>f2 p(A) 

E1 0.9 0.9 0.9 

E2 0.9 0.7 0.3 

E3 0.7 0.3 0.9 

E4 0.7 0.1 0.3 

E5 0.3 0.9 0.7 

E6 0.3 0.7 0.1 

E7 0.1 0.3 0.7 

E8 0.1 0.1 0.1 

Note. Classification probability to category B is 1 - p(A). These 

probabilities can be used to guide how probabilistic feedback is 

provided (see text for details). 

Table 3 

Individual Feature Association Weights (i.e., rxy) for 

each Condition 

 

Feature 
Condition 1 

f1>f2>f3 

Condition 2 

f2>f3>f1 

Condition 3 

f3>f1>f2 

f1 0.6 0.0 0.2 

f2 0.2 0.6 0.0 

f3 0.0 0.2 0.6 

Participants and Procedures 

Thirty-six undergraduate students (27 females) aged 18 to 37 (mean = 20.11, SD = 3.21) signed informed 

consent to participate in the experiment for course credit. Sample size was estimated based on previous 

experiments. However, results suggest that our sample size choice was appropriate (Cohen’s F = 0.53). The 

informed consent was made in accordance with the Adolfo Ibáñez University Ethics Committee. Participants 

were randomly assigned to one of the three between subjects' experimental conditions: Condition 1 (f1 > f2 > f3), 

Condition 2 (f2 > f3 > f1) and Condition 3 (f3 > f1 > f2); twelve participants in each condition). The experiment 

lasted approximately 30 minutes. 

In our experiment, participants learned to classify 8 exemplars into one of two categories (A or B). During 

training, participants were provided with trial-by-trial corrective PF with the schedule shown in Table 2. 

Participants underwent 3 blocks of 80 trials each, for a total of 240 training trials. During each block, 

participants received 10 repetitions of the 8 exemplars (i.e., 10 x 8 = 80). Trial order was randomized within 

each block. Subjects had to press the keyboard button “Z” if they believed the presented exemplar belonged 

into category A, otherwise, they had to press the button “M”. For correct responses, a green “correct” sign 

appeared on screen for 1500 ms. For incorrect responses, a red “incorrect” sign appeared on the screen for 

the same amount of time. Subjects had 30 seconds to give a response, otherwise a “too slow” message appeared 

on the screen (see Figure 1). 

As shown in Figure 1, three spheres covering 9.62 cm2 each are the ceremonial symbols on the screen. 

The spheres remained in the same screen location during the complete experiment. The experiment was built 

using PsychoPy v3 and mounted online through the Pavlovia environment (Peirce et al., 2019). We used the 

last block (i.e., block 3) to perform the model fits we present in the Modeling Results section. 
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Results 

Behavioral Results 

Behavioral results revealed that participants in condition 1 (f1 > f2 > f3) achieved a mean accuracy of .58 

(SD = .06), in condition 2 (f2 > f3 > f1) mean accuracy was .63 (SD = .08), and in condition 3 (f3 > f1 > f2) mean 

accuracy was .62 (SD = .07). In none of the conditions did subjects approach optimal performance, which was 

set at .77 (calculated by Luce’s axiom). Furthermore, it is apparent that none of the subjects showed signs of 

using only the most diagnostic rule for classification. If subjects only had used the most diagnostic feature in 

each condition, they would approach the 77 % correct response criterion. We clearly did not find this (see 

Figure 2).  

A factorial 3 (conditions: f1 > f2 > f3, f2 > f3 > f1 and f3 > f1 > f2) x 3 (blocks) design with the last being the repeated 

measure factor, revealed a main effect of block (F(2,66) = 9.55, MSe = .05, p < .001, 𝜂p2 = .22, power = .98), a non-

significant main effect of condition (p = .21), and a non-significant interaction between block and condition 

(p = .83). These results suggest that there was a learning effect across blocks in every condition. Contrast 

comparisons revealed a significant difference between block 3 and the previous blocks (blocks 1 and 2) 

(F(1,33) = 9.02, MSe = .07, p = .005, 𝜂p2 = .22, power = .83), and a significant difference between blocks 1 and 

2 (F(1,33) = 9.99, MSe = .12, p = .003, 𝜂p2 = .23, power = .87). This comparison shows that by block 3 subjects 

had learned to discriminate between exemplars (see Figure 2). 

Figure 2 

Classification Probability of Category A (Family Z) given each Specific Exemplar 

Combination across Blocks 

 

 

Additionally, we compared our classification predictions using the Adaptive Filter with the empirical 

training accuracy in block 3. The predictions of the Adaptive Filter are given by eq. (6). For these predictions, 

we averaged accuracy in block 3 for each exemplar and in each condition (recall that contrast comparisons 

showed that in block 3 had achieved asymptotic performance). Because empirical probabilities and predicted 

probabilities are two linear trajectories, we directly estimated the R2 between both. As Figure 3 shows, there 

is a clear tendency for subjects in every condition to learn the exemplar classification probability. In general, 

fittings are fairly good. For condition 1 (f1 > f2 > f3), R2 = .90; for condition 2 (f2 > f3 > f1), R2 = .97; and for 

condition 3 (f3 > f1 > f2), R2 = .89. 
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Figure 3 

Probability of Classification in Category A (button Z) for a given Exemplar in each Condition 

 

 
Note. (A) Condition 1 (f1 > f2 > f3), (B) Condition 2 (f2 > f3 > f1) and (C) condition 3 (f3 > f1 > f2). Continuous lines show average 

subject data on block 3 for each exemplar, and the dashed line shows optimal probabilities by experimental task presented in 

Table 2. Note, that the optimal classification probabilities are computed by Eq. (6). 

These comparisons revealed that by providing PF subjects were able to learn to classify close to what the 

Adaptive Filter stipulates. In other words, by simply contrasting trajectories we could observe that the 

Adaptive Filter accounts for human classification data using PF. However, there are still gaps regarding the 

cognitive mechanism that underlie probabilistic classification. For this issue, a more formal comparison is 

advised. In the next section, we contrast the Adaptive Filter predictions against similarity-based models 

using a model fitting strategy. 

Modeling Results 

GCM, MPM and ALF were fitted for each subject using p(A|exemplar) computed from frequencies 

obtained during training block 3. As shown earlier, training results suggest that there was a learning effect 

across blocks in every condition. Thus, we assume that during block 3 subjects had already learned to 

accurately discriminate between exemplars (at least as accurately as they were able to). Consequently, for 

each subject and model we computed the predicted p(A|exemplar) probability for block 3 and adjusted each 

separate model’s free parameters using the negative log-likelihood (lnL, see eq. 7; Little & Lewandowsky, 

2009a) as an error metric, computed as:  

𝑙𝑛𝐿 = − ∑ 𝑑𝑖 ln(𝑝𝑖) + (𝑛𝑖 − 𝑑𝑖)ln (1 − 𝑝𝑖)

𝑖

 
(7) 

Where di is the observed number of A responses made for exemplar i, pi is the model predicted probability 

of category A for exemplar i and ni is the number of times exemplar i was presented (in this case ni = 10). 

Because we used negative lnL, lower lnL values indicate a better model fit. In general, closer predicted to 

observed probabilities indicate a better model. However, parameter interpretability should also be considered 

when judging model fit.  

Both GCM and MPM have five free parameters: a sensitivity scaling parameter (c), three attentional 

weights (w, fixed to sum 1) and a scaling response parameter (gamma). For ALF, we estimated a single free 

parameter: the scaling response parameter (g). We used standard maximum likelihood methods for 

parameter estimation with the “fminsearchbnd” function in MatLab (D’Errico, 2021). The parameters were 

optimized separately for each model and for each subject.  
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For model comparison we used BIC (Bayesian Information Criterion) and AIC (Akaike Information 

Criterion). Both are lnL (log Likelihood) computations that penalize models with more parameters (in 

general, BIC performs a stronger penalization than AIC).  

Our modeling results show that ALF achieves better fits for each of the individual subjects in every 

condition. In Table 4, fit values averaged across participants are presented. The reader will note that ALF 

shows better fits, even without penalizing the number of free parameters (with the only exception of condition 

3, where ALF is almost tied with the prototype model). Model comparison is even more favorable to ALF 

when the number of free parameters is penalized (see Table 4). 

Table 4 

Mean Grouped Fit Values for each Condition and for each Model (GCM, MPM and ALF) 

 

Model 
Condition 1 Condition 2 Condition 3 

lnL BIC AIC lnL BIC AIC lnL BIC AIC 

GCM 
53.52 

(1.92) 

118.56 

(3.85) 

117.04 

(3.85) 

50.97 

(3.46) 

113.45 

(6.92) 

111.94 

(6.92) 

51.84 

(3.38) 

115.20 

(6.75) 

113.68 

(6.75) 

MPM 
61.50 

(30.73) 

134.52 

(61.47) 

133.0 

(61.47) 

50.07 

(6.86) 

111.65 

(13.72) 

110.14 

(13.72) 

48.51 

(4.69) 

108.52 

(9.39) 

107.01 

(9.39) 

ALF 
52.45 

(3.16) 

107.19 

(6.32) 

106.89 

(6.32) 

47.83 

(5.14) 

97.97 

(10.27) 

97.67 

(10.27) 

48.90 

(5.39) 

100.09 

(10.79) 

99.79 

(10.79) 

Note. Mean values were obtained by averaging subjects’ fits for each condition and each model. In parenthesis the 

standard deviation. 

Models’ parameter analysis 

Additionally, we show the averaged parameter estimations for each of the free parameters for each model 

in Table 5. Note that values presented are averages across fits obtained for individual subjects and not the 

result of fits performed on averaged data (for a discussion of these different approaches, see Ashby et al., 

1994). For the interested reader, individual level fits are available at https://osf.io/eackz/ 

Table 5 

Mean Parameter Estimates for each Model and each Condition 

 

Model 
Condition 1 Condition 2 Condition 3 

g c w1 w2 w3 g c w1 w2 w3 g c w1 w2 w3 

GCM 
0.33 

(0.24) 

1.06 

(0.11) 

0.30 

(0.02) 

0.36 

(0.02) 

0.34 

(0.01) 

0.53 

(0.30) 

1.03 

(0.07) 

0.34 

(0.01) 

0.31 

(0.02) 

0.35 

(0.02) 

0.46 

(0.31) 

1.02 

(0.03) 

0.34 

(0.01) 

0.35 

(0.02) 

0.31 

(0.01) 

MPM 
0.17 

(0.24) 

9.81 

(15.12) 

0.61 

(0.31) 

0.28 

(0.28) 

0.11 

(0.15) 

0.26 

(0.17) 

4.77 

(4.97) 

0.22 

(0.35) 

0.51 

(0.28) 

0.27 

(0.14) 

0.27 

(0.21) 

2.21 

(1.54) 

0.42 

(0.14) 

0.09 

(0.17) 

0.50 

(0.23) 

ALF 
0.74 

(0.56) 

- - - - 1.35 

(0.75) 

- - - - 1.23 

(0.75) 

- - - - 

Note. Standard deviation in parenthesis. 

An interesting result to look at is the attentional weights parameter w. A model that treats w as free 

parameters should aim at capturing the attentional weight we defined in our experiment (see Table 3). Our 

modeling results show that the GCM cannot capture the feature-relevance pattern specified in Table 3. As 

shown in Table 5, the GCM estimates the same weights for all three features. In contrast, the MPM shows a 

sensitivity of the w parameters in accordance with feature-weights stipulated during training in each 

condition (see Table 3). For example, as Figure 4 shows, in condition 1 (f1 > f2 > f3), the MPM estimates a 

higher value of w for feature 1, and lower values for features 2 and 3, consistently with weight shown in 

Table 3. The same occurs for conditions 2 (f2 > f3 > f1) and 3 (f3 > f1 > f2). This difference in w parameter 

https://osf.io/eackz/
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estimation between GCM and MPM was confirmed through a 3 (condition) x 2 (model: GCM and MPM) x 3 

(attentional weights) repeated ANOVA, with the last being the repeated measure factor. For this analysis, 

we reordered attentional weight data to be coherent to the condition’s correlations shown in Table 3. For 

example, for condition f2 > f3 > f1, the second attentional weight (i.e., f2) is the most important, the third (i.e., 

f3) is less important and the first (i.e., f1) is non-diagnostic. Thus, attentional weights have been ranked. 

Having reordered data for the three conditions, the repeated measures ANOVA using Greenhouse-Geisser 

correction revealed a main effect of attentional weight rank (F(2,132) = 13.26, MSe = .66, p < .001, 𝜂p2 = .17, 

power = .99) a significant interaction between attentional weight rank and model (F(2,132) = 20.35, MSe = .99, 

p < .001, 𝜂p2 = .24, power = .99), a non-significant interaction between attentional weight rank and condition 

(p = .40) and a non-significant three way interaction (p = .28). This analysis confirmed that MPM attentional 

weights are statistically different to those estimated by the GCM (i.e., the two-way significant interaction 

between attentional weight rank and model). Visual inspection of Figure 4 clearly illustrates where the 

difference lies. Under PF conditions, the GCM cannot capture the purported attentional weights we designed 

our experiment with (see Table 3), settling on about equal weights for all features (i.e., the almost flat lines 

in Figure 4). This is an important result because it poses a clear limit to the GCM’s explanatory scope. 

Figure 4 

Attentional Weights Estimated by both Models GCM and MPM and for 

each Condition 

 

 
Note. (A) Condition 1 (f1 > f2 > f3), (B) Condition 2 (f2 > f3 > f1) and (C) Condition 3 (f3 > f1 > f2). 

Solid line show GCM predicted weights and dashed line show MPM predicted weights. 

Standard errors at 95 %. 

Finally, an important aspect of similarity-based models is the gamma parameter. This parameter 

describes a subject's response strategy. While gamma > 1 allows for similarity models to account for 

deterministic responses, gamma < 1 allows to account for probabilistic responses. Because our procedure 

involves probabilistic feedback to fit the data, both GCM and MPM converge on gamma values lower than 1. 

As Nosofsky and Zaki (2002) discuss, the gamma parameter is added to the choice response equation (see eq. 

(3)), where each similarity (i.e., SA(x) and SB(x)) includes the gamma scaling-parameter. However, because 

our ALF model does not predict the p(category|exemplar) by using Luce’s axiom, we added a g parameter to 

the logistic function (see eq. (6)). The g parameter in the ALF has the same assumptions and constraints as 

the gamma parameter. Indeed, partial correlations controlling by condition confirm this assumption. The g 

parameter estimated through modeling is significantly correlated to MPM gamma (r = .57, p < .001) and 

GCM gamma (r = .98, p < .001). This shows that our g parameter behaves similarly to the gamma parameter 

of similarity-based models.  
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Discussion 

In the current work, we contrasted two well-known similarity-based models (GCM and MPM) with a 

model based on associative learning strength (ALF) under conditions of uncertainty (i.e., probabilistic 

classification). Our review of the literature reveals that procedures that explore category learning under 

uncertainty are sparse (Marchant & Chaigneau, 2021). Because natural learning scenarios and 

categorization of real-life objects and events rarely occur in an invariant context (cf., Tversky & Kahneman, 

1974; Estes, 1976), it is interesting to test traditional similarity-based models’ ability to account for data 

under these conditions. To this end, we trained subjects in a probabilistic category learning task that uses 

different exemplar probabilities by adjusting the p(category|exemplar).  

Fitting computational models to empirical data, enables direct comparison between competing models 

(Wills & Pothos, 2012). When performing those comparisons, our results show that under a probabilistic 

category learning paradigm our ALF model generally produces better fits of subjects’ category learning data. 

The reasons why similarity-based models perform worse in a probabilistic category learning environment are 

complex. A first element to consider is that successful performance in probabilistic categorization is far from 

optimal performance in deterministic categorization. As shown in Figure 3, the exemplar that produced the 

best performance in our experiment, produced only 77 % of correct classifications (Exemplar E1 in condition 

2). Because in experiments that use a DF response criterion, feedback is consistent throughout the complete 

experiment, people can achieve perfect performance. In contrast, in PF experiments perfect performance is 

not possible. However, people should be near the “optimal” probabilistic performance set by the 

experimenters (Shanks et al., 2002). To understand why the GCM is not equipped to handle probabilistic 

performance, it is useful to examine Eq. (1) in more detail. That equation reflects that the GCM assumes that 

each exemplar is compared to all the other available ones. Thus, the GCM extracts a virtual prototype (i.e., 

the category centroid) from the data. Because, though learning had already occurred in block 3 (see Figure 

2), subjects’ performance was still highly variable during that block, the GCM could not extract category 

structure from that data, leading to the undifferentiated w parameters in Table 5 and Figure 4. For 

preliminary evidence consistent with our explanation, see Rouder and Ratcliff (2004). 

The situation is different for the MPM for precisely the same reasons discussed above. In contrast to the 

GCM, the MPM requires being given the category prototype and does not extract it solely from the data (as 

a reminder, prototypical category A was set to “111”). Inspecting Eq. (4) helps making this point. The 

prototype that figures in Eq. (4) does not figure in Eq. (1). This allows the MPM to extract information from 

the data even under noisy conditions such as those in our experiment. 

However, the ALF model outperforms both similarity-based models. The reasons for it being better than 

the GCM were discussed above. It is striking though that the AFL outperforms the MPM. Similar to the 

prototype model, which is provided with the prototype, the experimenter provides the AFL with the feature 

weights implied in the probabilistic task structure, which suggests that they might perform similarly. 

Furthermore, Nosofsky (1992) suggested that the AFL is equivalent to a prototype model, which also hints 

that they should perform similarly. However, as we have shown, this is not the case. Furthermore, the AFL 

achieves its fit with a single free parameter (g) while the MPM requires 4 free parameters and does not 

achieve the same fits attained by the AFL. We believe the main reason why the AFL outperforms the other 

models must be because of the correlation coefficients in Table 3, which are fed into Eq. (6) for our modeling, 

closely reflect the task structure that subjects experienced in our task. Recall that the weights shown in Table 

3 are the correlation coefficients relating each individual feature with the category under the uncertain 

feedback conditions. This is precisely what the learning algorithm in Eq. (5) holds, i.e., that people learn 

those associations through feedback. This strongly suggests that under conditions of probabilistic feedback, 

people rely on an associative learning mechanism (perhaps motor-driven), rather than on the elaboration of 

a logical verbal rule in which declarative memory is involved.  

Prima facie, our modeling effort shows that similarity computations may not be the best way to 

conceptualize category learning in PF tasks. If not similarity, which computations might be apt? Continuing 

with the topic we briefly discuss in the introductory section, we propose that category learning with PF is a 

procedural learning process, and that ALF models it. Consider that ALF is based on previous connectionist 

learning models (component-cue network model; Gluck & Bower, 1988) which use an error metric that 

converges to a least mean squared (LMS) solution through the association of the input patterns with their 

outputs. Note, that Eq. (5) is the delta rule first proposed by Widrow and Hoff (1960), which both ALF and 

connectionist models used to account for a LMS solution. It is generally accepted that this delta rule is similar 
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to the Rescorla and Wagner (1972) model of animal associative learning. However, the proposal in the current 

work differs from a connectionist learning model on how the model estimates p(category|exemplar) (i.e., the 

logistic function in Eq. (6)).  

Continuing with the procedural learning theme, note that there is a large body of research linking 

procedural learning with the Basal Ganglia (Ashby & Spiering, 2004; Ashby & Ennis, 2006; Ashby, Ennis, & 

Spiering, 2007). Thus, and consistently with findings in clinical patients using the Weather Prediction Task 

(Knowlton et al., 1994; Gluck et al., 1996), we want to hypothesize that the brain mechanisms that are being 

modeled by the ALF may be implemented in cortico-cortical loops involving the Basal Ganglia (Lawrance et 

al., 1998; Seger, 2006; 2008). Future studies could further explore ALF model predictions regarding Basal 

Ganglia activation by employing neuroimaging techniques or neuropsychological participants. 

A final issue worth considering is model parsimony. In general, given similar explanatory power, the 

simpler model is to be preferred. On that ground, ALF is also superior to the similarity-based counterparts. 

Our results show that the ALF achieves better fits (i.e., more explanatory power), even before penalizing 

models for their number of free parameters (i.e., parsimony). 

Future directions 

Based on results like those reported here, work in our laboratory has recently focused on the ALF as a 

model of procedural category learning model. Several issues remain to be explored. We do not discuss them 

in depth here, but only provide a list so the reader can sense the research program’s potential. An initial 

question we would like to address is whether we could combine a procedural-based model with a similarity-

based model. A previous well-known model has endeavored to accomplish this purpose. The Attentional 

Learning COVEring map (ALCOVE; Krushcke, 1992) is a connectionist model which combines exemplar 

category representation with an error-driven metric (i.e., the delta rule discussed above). A logical follow-up 

is to compare ALCOVE and ALF under conditions of uncertainty. Note that in the current work we have 

shown that a purely procedural-based model could account for probabilistic category learning without 

implying a similarity metric. However, further evidence and comparisons with other models such as ALCOVE 

would be desirable. 

A related issue in computational models of categorization is the relevance for models to capture individual 

learning trajectories (Ashby; Maddox, & Lee, 1994; Shen & Palmeri, 2016). Accounting for individual learning 

curves would reveal different time-points where each participant achieves an optimal performance. 

Preliminary work in our laboratory shows that the ALF can capture individual trajectories during learning 

and predict individual classification predictions. Other phenomena that the ALF should be able to handle, 

which open alternative for future work, are the base-rate neglect phenomena (Estes et al., 1989), feedback 

discounting (Craig et al., 2011) and feature-blocking (Bott et al., 2007). 

In sum, here we provided evidence for a simple procedural-based model of category learning that 

efficiently accounts for people’s learning performance under conditions of uncertainty. We expect these 

contributions to be meaningful for computational psychology in general and for cognitive modelers who 

explore the quantitative implementation of categorization theories. Furthermore, the mathematical 

formulations of the ALF may also be interesting to other fields in the Cognitive Sciences, such as AI.  
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