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Abstract 
Simple closed-form solutions for the undrained bearing capacity of strip footings on anisotropic cohesive soils are derived employing kinematical approach of limit 
analysis. Both modified Hill-type and translational failure mechanisms, with variable wedge angles, are attempted and the best upper bound for each mechanism has 
been analytically determined leading to an analytical expression for the bearing capacity factor. The influence of degree of soil anisotropy on the corresponding value 
for the bearing capacity factor has also been evaluated. For a wide range of degree of anisotropy, the improvement in the predicted upper bound values does not 
warrant the use of the modified Hill-type mechanism. Instead, the conventional Hill-type failure mechanism, with a fixed wedge angle of π/4, provides a simple and 
concise analytical expression for the bearing capacity factor that is analytically equivalent to the conventional Prandtl - Reissner bearing capacity factor for the case of 
isotropic soil multiplied by the average of the sum of degree of anisotropy plus unity.  
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Resumen 
Las soluciones de forma cerrada simples para la capacidad de carga no drenada de zapatas escalonadas en suelos isotrópicos cohesivos se derivan al emplear el 
enfoque cinemático del análisis de límites. Se intentan utilizar tanto el mecanismo traslacional de fallas como el mecanismo modificado tipo Hill, con ángulos de 
incidencia variables. Se ha determinado, de forma analítica, la mejor cota superior para cada mecanismo, lo cual nos lleva a una expresión analítica para el factor 
de capacidad de carga. También se ha evaluado la influencia del grado de anisotropía del suelo en el valor correspondiente para el factor de capacidad de carga. 
Para un amplio rango de grados de anisotropía, la mejora en los valores predichos de la cota superior no garantiza el uso del mecanismo modificado del tipo Hill. En 
vez de eso, el mecanismo convencional de falla del tipo Hill, con un ángulo de incidencia fijo de π/4, nos entrega una expresión simple y concisa  para el factor de 
capacidad de carga que es analíticamente equivalente al factor convencional de capacidad de carga de Prandtl-Reissner, para el caso de suelos isotrópicos 
multiplicado por el promedio de la suma del grado de anisotropía más la unidad.  
 
Palabras Clave: Zapatas someras, anisotropía del suelo, análisis de límites, método de cota superior, mecanismo de fallas, solución de forma cerrada 
 
 

1. Introduction 
 
 The ultimate bearing capacity of foundations is 
commonly estimated based on the assumption that the soil 
is isotropic with respect to shear strength. However, clay 
strata are usually deposited and consolidated under one-
dimensional conditions, and hence most naturally occurring 
clays are inherently anisotropic (Ward et al., 1965; Bishop, 
1966). This results in horizontal bedding planes having 
strength and other physical properties different in horizontal 
and vertical directions. The anisotropy is mainly attributed 
to the process of sedimentation followed by predominantly 
one-dimensional consolidation that leads to preferred 
orientation of clay particles which tend to become oriented 
perpendicularly to the major consolidating stress.  
 Because of soil anisotropy, the undrained shear 
strength varies with the orientation of the failure plane. In 
the bearing capacity problem, the direction of the principal 
stresses along any assumed failure surface changes from 
one point to the other. Therefore, it is more realistic to use 
values of strength appropriate to each orientation of the 
failure plane. This is of a prime importance especially for 
the case of analytical solutions where the undrained 
bearing capacity is solely function of one soil parameter 
(i.e. undrained shear strength), contrary to computational  
 
 

solutions where the soil behaviour is characterized by 
several constitutive parameters, albeit with different level of 
importance. 
 There have been several attempts pertaining to the 
evaluation of the bearing capacity of footings on cohesive 
soils that took into account anisotropy in shear strength. 
Using the limit equilibrium approach and assuming a 
circular failure surface, Menzies (1976) presented a 
correction factor for the influence of strength anisotropy on 
the predicted bearing capacity. Employing the method of 
limit equilibrium, Reddy and Srinivasan (1967) adopted a 
circular failure mechanism for the analysis of bearing 
capacity of footings over soils with non-homogeneous and 
anisotropic strength. The parameters describing the 
geometry of the mechanism were varied, and the results 
were presented in the form of dimensionless design charts. 
Adopting the same circular failure mechanism, but using 
the upper bound approach of limit analysis, Chen (1975) 
presented solution that agreed with the previously obtained 
Reddy and Srinivasan (1967) limit equilibrium method 
solution. Although the use of the circular mechanism 
presumably simplifies the mathematical analysis, this mode 
of failure does not provide the best solution.  
 Davis and Christian (1971) presented solution for 
the bearing capacity of anisotropic clays by use of the slip-
line method. A correction coefficient for the bearing 
capacity factor was presented in a graphical form as a 
function of the soil strength parameters. Assuming a failure 
mechanism similar to Prandtl-type mechanism, but with 
varying boundary wedge angles, Reddy and Rao (1981) 
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used the upper bound approach of limit analysis for the 
evaluation of bearing capacity for anisotropic and non-
homogeneous clays. Although the solution is rigorous 
within the concept of limit analysis, however the derived 
expression is exceedingly cumbersome and the least upper 
bound could only be obtained numerically by a process of 
trial-and-error (heuristically) or with the aid of iterative 
rigorous optimization technique.  
 Evidently, irrespective of the method of analysis and 
the adopted failure mechanism, all available solutions for 
the bearing capacity of footings on anisotropic soils present 
results in the form of graphs relating the ultimate bearing 
capacity to soil and failure mechanism parameters. 
Presenting results for a wide range of useful combinations 
of all parameters generally requires a large number of 
diagrams. Furthermore, an advantage of the closed-form 
solution is that it clearly depicts the effect of soil anisotropy 
on the bearing capacity as opposed to tabular or graphical 
representations where such an effect is obstructed in a 
number of charts and/or tables. In addition, the use of 
graphs and tables in design practice is not convenient for 
computer computations. It would therefore be reasonable 
for one to contemplate that, partly because of the lack of a 
simple closed-form solution; computations of the bearing 
capacity of footing on anisotropic soils remain, to some 
extent, a research topic with less practical applications. 
 This paper presents closed-form solutions for the 
ultimate bearing capacity of strip footings placed on the 
surface of anisotropic clays. The solutions are obtained 
using the upper bound method of limit analysis (Drucker et 
al., 1952), and expressions for the bearing capacity factor 
are derived for modified Hill-type and translational failure 
mechanisms. The strength in any direction in the vertical-
horizontal plane is expressed in terms of the strength in the 
principal direction according to the functional relationship 
suggested by Casagrande and Carillo (1944). The effect of 
anisotropy on the predicted bearing capacity is 
demonstrated, and the results are compared with available 
pertinent solutions.  
 

2. Method of analysis 
 
 With the advent of powerful computers and the 
development of modern computational methods the ability 
to analyze problems has, for the first time, outstripped our 
ability to describe the material (Drucker, 1991). However, 
despite the development of a variety of computational 
methods, which makes solutions for many complicated 
problems attainable, it is still of a prime importance to carry 
out simple analytical computations to gauge the results 
from such rather elaborate numerical analyses.  
 The slip-line, limit equilibrium, and limit analysis 
methods are traditionally the most common analytical 
methods used to solve stability problems in geotechnical 
engineering. Although the limit analysis method is a 
relatively new technique, compared with the slip-line and 
limit equilibrium methods, it has found a wide application 
for solution of conventional geotechnical stability problems, 
including bearing capacity of footings (Chen and Davidson, 
1973; Florkiewicz, 1989; Michalowski, 1997; Ukritchon et 
al., 1998, Kumar and Kouzer, 2007; Kumar and Kouzer, 
2008a; Kumar and Khatri, 2011) lateral earth pressure 
problems (Chen and Rosenfarb, 1973), stability of slopes 
(Chen and Giger, 1971; Izbicki, 1981), and vertical cuts 

(Drescher, 1983; Su et al., 1998; Kumar and Kouzer, 
2008b). The theory provides upper and lower bounds that 
serve to bracket the limit load for rigid-perfectly plastic 
materials, and computations of the two bounds is generally 
referred to as limit analysis (Chen, 1975). Contrary to the 
kinematic approach which has been used so successfully, 
the lower bound has been less frequently applied to 
geotechnical engineering problems. This is because it is 
considerably more difficult to construct a good statically 
admissible stress field than it is to construct a good 
kinematically admissible failure mechanism (Sloan, 1988).  
 The upper bound theorem of limit analysis states 
that: for a perfectly plastic material with an associated flow 
rule, the collapse must occur for any kinematically 
admissible failure mechanism if the rate of work done by a 
set of external forces in an increment of displacement 
equals or exceeds the rate of energy done by internal 
stresses (Chen, 1975). A kinematically admissible velocity 
field is one that satisfies the compatibility equations, the 
flow rule, and the velocity boundary conditions. During 
plastic flow, power is dissipated by plastic yielding of the 
soil mass and by sliding along velocity discontinuities, 
where jumps in the normal and tangential velocities can 
occur. 
 
2.1 Upper-bound solutions for bearing capacity 
 The first essential step in the upper bound approach 
of limit analysis is the postulation of a kinematically 
admissible failure mechanism (also known as velocity field) 
in terms of geometric parameters (e.g. radius of curvature, 
slip surface angle, etc.). Equating the rate of work of 
external forces to the rate of internal energy dissipation, an 
expression for the collapse load is obtained as a function of 
the material properties and geometry of the failure 
mechanism. The geometric parameters of the failure 
mechanism are then varied in an optimization scheme 
either by trial-and-error procedure or by means of 
mathematics to yield the minimum dissipated power, and 
hence the best upper bound for the particular failure 
mechanism. Several classes of collapse mechanisms may be 
investigated, and the least upper bound obtained from all 
attempted mechanisms is considered the best upper bound 
of the true limit load.  
 In this investigation, several of the commonly known 
kinematically admissible failure mechanisms for the bearing 
capacity problem have been attempted. The objective was 
not only to obtain the least upper bound possible to the 
bearing capacity, but also to fulfil the prime objective of this 
paper of obtaining a closed-form expression for the bearing 
capacity factor. It was not clear a priori which mechanism 
would predict the least bearing capacity or the one which 
would yield a closed-form expression for the bearing 
capacity factor. The two mechanisms presented herein are 
a modified Hill-type mechanism and a translational 
mechanism. 
 
2.2 Modified hill-type mechanism 
 The first failure mechanism considered is shown in 
Figure 1a. It consists of rigid triangle wedges ABC and 
AB'C' with base angles β and π/2-β; radial shear zones 
BCD and B'C'D' of central angle α+β; and passive 
Rankine’s triangular wedges BDE and B'D'E' with base 
angles α and π/2-α. The mechanism shown in Fig. 1a 
resembles that of Hill-type; however, the angles α and β are 
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not given a priori, but are subject to change during the 
search for the minimum upper bound load. For isotropic 
soils, the minimum is found when this mechanism becomes 
identical to that of Hill’s original-type mechanism for which 
the angles α and β are equal to a fixed value of π/4. The 
mechanism is symmetric about the axis of the footing, and 
hence only the right-hand side is considered in the 
subsequent derivations. 
 Since the velocity for the rigid triangles ABC and 
BDE are, respectively, perpendicular to the radial lines BC 
and BD, the mechanism is specified completely by the two 
angles α and β. The length of discontinuities AC, CD, and 
DE can be expressed as functions of the width of the 
footing, B, and the angles α and β. Plastic flow is confined 
to the region above the line of failure surface A-C-D-E and 
the soil below this discontinuity line remains at rest. The 
footing is assumed to be rigid and it moves downward with 
the velocity Vf. Thus the movements of the contact plane 
BB' must always remain plane. The wedge ABC translates 
diagonally downward as a rigid body parallel to 
discontinuity line AC at the as yet undefined angle β to the 
line of footing bottom. The fan BCD undergoes continuous 
shear deformation and is considered to be composed of a 
sequence of rigid triangles that move as rigid bodies in the 
direction perpendicular to BD. The zone BDE is pushed 
upward as a rigid body with a velocity equal to the velocity 
perpendicular to the radial line BD, and with the line DE 
constrained to be tangent to the curve CD at point D.  
 Evaluation of dissipation of energy requires knowing 
the relative sliding velocities between adjacent blocks. Due 
to incompressibility of clays under undrained loading, in 
rigid-block mechanisms, where all deformation takes place 
along interfaces between blocks, the velocity jump between 
two blocks is parallel to the slip surface. For failure 
mechanisms comprised of different rupture lines, the most 
direct and convenient method is by the use of velocity 
diagram. This velocity field, also known as hodograph, is a 
graphical representation of the velocity vectors whose 
lengths are proportional to the velocity magnitudes and 
their directions are parallel to the actual velocities in the 
physical space.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The hodograph depicting the velocities of sliding 
blocks in Figure 1a is shown in Figure 1b. Using geometric 
relations on the velocity diagram shown in Figure 1b, the 
appropriate velocities for individual blocks are uniquely 
determined as functions of the footing downward 
movement, Vf, and the angles α and β. Velocities of blocks 
ABC and BDE are equal in magnitude, and velocities in 
region BCD have the same magnitude, with the direction 
changing according to the radius derived from point B. 
 Because relative motion is required between the 
footing and the soil immediately beneath it, the interface 
between the wedge ABC and the footing bottom is 
assumed to be smooth leading to zero rate of work along 
surface AB. Furthermore, due to the incompressibility of 
Tresca material during plastic flow, the incipient downward 
flux of mass along boundary AB must be equal to the 
upward flux across boundary BE, and thus the net work 
rate of the soil weight is equal to zero. 
 The soil behaviour is assumed to conform to 
associative flow rule, and hence the dissipation rate along 
the slip surface is simply equal to the scalar product of the 
shearing resistance and the magnitude of the velocity jump 
vector, or  
 

nnunn VlCW =δ                                                                  (1) 
 
where Cun, ln, Vn, δWn are the undrained shear strength, 
length, velocity, and incremental energy dissipation along 
the slip surface n, respectively.  
 
 It is assumed in this study that the strength in any 
direction in the vertical-horizontal plane is expressed in 
terms of the strength in the principal direction according to 
the functional relationship proposed by Casagrande and 
Carillo (1944) such that 
 

iCCCC uhuvuhui
2cos)( −+=                                         (2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. (a) Modified Hill-type failure mechanism; (b) Velocity hodograph 
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 Where Cuv and Cuh are the undrained shear strength 
for compression in the vertical and horizontal directions, 
respectively, Cui is the shear strength corresponding to the 
inclination i of the major principal stress with vertical 
direction. There have been other equations suggested by 
other investigators (Bishop, 1966; Menzies, 1976; Livneh 
and Komornik, 1967), however Equation 2 has been the 
basis for almost all subsequent work in spite of the fact that 
it was originally suggested as a working hypothesis without 
experimental justification (Davis, 1971). 
 Figure 2 shows the directional variation of shear 
strength. The strengths Cuv and Cuh are called the principal 
strengths (Lo, 1965) and the ratio Cuh /Cuv is denoted by k 
and termed the degree of undrained anisotropy (Menzies, 
1976), coefficient of anisotropy (Reddy and Srinivasan, 
1967), anisotropy index (Livneh and Komornik, 1967), or 
degree of anisotropy (Lo, 1965). The value of k is assumed 
to be the same at all points in the soil medium. For isotropic 
soil Cuv = Cuh, k = 1, and the curve traced by Cui in a 
vertical-horizontal plane becomes a circle as shown in 
Figure 2b. For anisotropic materials, the locus of Cui can 
assume any convex form other than a circle. According to 
Equation 2, it is assumed to be an ellipse, and in terms of k, 
Equation 2 can be written as 
 

uvui CikkC ]cos)1([ 2−+=                                             (3) 
 
 Values of k ranging from about 0.6 to 1.3 have been  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

reported by Lo (1965), with the value of k greater than 1 
obtained mostly in the case of overconsolidated clays. 
Davis and Christian (1971) compiled a substantial 
anisotropic strength data reported by various investigators 
for different clay deposits. The ratio of the undrained 
strength in the horizontal direction to its value in the 
vertical direction ranges between 0.75 to about 1.56. Lee 
and Rowe (1989) reported that for variety of soils the value 
of k ranges from 0.77 to 1.27.  
 From Figure 1a, L(AC) = (B/2)cos β; referring to Fig. 
1b,V(AC)=VABC = Vf /sin β; and the value of Cui(AC) is given 
by Equation 3 with angle i(AC) equal to π/2-(β+ψ), where as 
shown in Figure 2a, ψ is the angle between the failure plane 
and the plane normal to the direction of the minor principal 
stress. Consequently, the internal energy dissipation along 
the slip surface AC is obtained from Equation 1 as: 
 

[ ] fuvAC VCkkBW )(2cos)1()1(
4
cot

)( ψβ
β

δ +−−+=
               (4) 

 
 The length L(DE) is from Figure 1a equal to (B/2)sin 
β/tan α; from Figure 1b V(DE) = VBDE = Vf /sin β, and Cui(DE) is 
given from Equation 3 with the angle i(DE) equal to π/2-(α-
ψ). Substituting these values into Equation 1 gives  
 

[ ] fuvDE VCkkBW )(2cos)1()1(
4
cot

)( ψα
α

δ −−−+=
               (5) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. (a) Definition of strength variation with direction of major principal stress; (b) Variation of strength in vertical-
horizontal plane (After Lo, 1965) 
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 The rate of energy dissipation along the 
discontinuity curve CD is calculated by multiplying the 
differential area rdθ by undrained shear strength Cui given 
from Equation 3, times the velocity jump vector across the 
line whose magnitude is equal to Vf /sin β,  and integrating 
over the whole surface, or  
 

[ ] θβδ
βα

rdVCikkW fuvCDCD )sin/(cos)1(
0 )(

2
)( ∫

+
−+=

             (6) 
 
 The radius of the slip fan, r = (B/2)sin β, for any 
point on the failure surface CD the inclination angle i(CD) is 
equal to π/2-β+θ-ψ Substituting the values for r and angle 
i(CD) into Equation 6 ad integrating gives 
 

fuvCD VCkkBW ⎥⎦

⎤
⎢⎣

⎡ +−−−+++= ))(2sin)(2)(sin1(
2
1))(1(

4)( ψβαψβαδ
  (7) 

 
 The rate of energy dissipation in the radial shear 
zone BCD is given by multiplying the length of the radial 
line by the undrained shear strength along the line times the 
velocity jump vector across the line which is equal to Vf /sin 
β, and integrating over the angle α+β, or  
 

θβδ
βα

rdVCW fBCDuiBCD )sin/(
0 )()( ∫
+

=
                              (8) 

 
 Substituting into Equation 8 the value of r and that 
of Cui(BCD) as obtained from Equation 3 with i(BCD) = β-θ-ψ, 
yields  
 

fuvBCD VCkkBW ⎥⎦

⎤
⎢⎣

⎡ −++−+++= ))(2sin)(2)(sin1(
2
1))(1(

4)( ψβψαβαδ
  (9) 

 
 The rate of external work done by the foundation 
load Pu is given by 
 

f
uVPE =δ                                                                     (10) 

 
 Combining Equations 4, 5, 7, and 9, and multiplying 
by two for both sides of the mechanism, gives the total 
rates of internal energy dissipation. Equating the total rate of 
internal energy dissipation thus obtained to the rate of 
external work, the upper bound for the foundation load, Pu, 
is expressed as 
 

( )
uv

u C
k

kBP ⎥
⎦

⎤
⎢
⎣

⎡

+−−

++++
=

)2coscot2cos(cot2cos)1(                                      
)(2cotcot)1(

2 ααββψ

βααβ

    (11) 
 
 To get the least upper bound requires minimization 
of Pu with respect to angles β and α, or 
 

0=
∂α
∂ uP

                                                                      (12a) 
 
and 
 

0 =
∂β
∂ uP

                                                                      (12b) 
 

 From Equations 11 and 12, and after algebraic 
manipulation and simplification, we have 
 

  
k)cos2-(1

)cos2 k)-(1-k)(1=tan2sin2 ⎥
⎦

⎤
⎢
⎣

⎡ +

ψ
ψ

αα
                                 (13a) 

 
and 

  
k)cos2-(1

)cos2 k)-(1-k)(1=tan2sin2 ⎥
⎦

⎤
⎢
⎣

⎡ +

ψ
ψ

ββ
                                 (13b) 

 
 It is evident from Equations 13a and 13b that α = β, 
and hence in terms of β Equation 11 reduces to: 
 

uv
a
cM

u CNq =                                                                 (14) 
 
Where uq  is the ultimate bearing capacity; equal to the 

ultimate load Pu divided by the area of the footing and 
a
cMN  is the anisotropic bearing capacity factor associated 

with the modified Hill-type mechanism (Figure1a) and is 
given by 
 

( ) ββψββ 2coscot2cos)1(2cot)1( kkN a
cM −−++=                  (15)  

 
 Evaluation of bearing capacity from Equation 14 
needs first the determination of the failure mechanism angle 
β from Equation 13b. It is the only unknown variable in 
Equation 13b; however it cannot be solved for explicitly. It 
can however be determined by a process of trial-and-error 
and the determined value is then entered into Equation 15 
for evaluation of the factor a

cMN which in turns is substituted 

into Equation 14 to give the corresponding bearing capacity 
value. 
 As we know for the case of isotropic strength the 
optimum value for angle β is 45°. Subsequently it will be 
demonstrated that for the common range of values for 
degree of anisotropy the optimum value for β is ≈ 45° ± 3°, 
and hence the term sin2β in Equation 13b can virtually be 
set equal to unity, and the value of β can be expressed 
explicitly.   
 
2.3 Translational Mechanism 
 The second mechanism considered consists, as 
shown in Figure 3a, of sliding blocks separated by internal 
planar rupture surfaces. It approximates the modified Hill-
type mechanism (Figure 1a), where the slip fan or shear 
zone region BCD in Figure 1a is replaced with the rigid 
block BCD in Figure 3a. Therefore, no deformation takes 
place within the region BCD, and for the entire mechanism 
the power is dissipated solely at the interfaces between 
adjacent blocks, which constitute velocity discontinuities. 
Since the mechanism is symmetrical about the axis of the 
footing, it is only necessary to consider the movement on 
the right-hand side of Figure 3a. 
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 The rigid blocks in the mechanism are separated by 
velocity discontinuities AC, BC, CD, BD, and DE. The 
footing moves downward at velocity Vf, and velocities of 
particular blocks can be obtained from geometrical 
relations in the hodograph shown in Figure 3b. The wedge 
ABC translates at an angle η with the horizontal. This 
movement is accommodated by the lateral movement of 
the adjacent block BCD which in turns pushes up the 
wedge BDE.  The two triangles BCD and BDE move as rigid 
bodies in the direction parallel to CD and DE, respectively.  
 From Figure 3a, L(AC) = B/(4cos η); referring to 
Figure 3b, V(AC) = Vf /sin η; and substituting the value of 
Cui(AC) is obtained from Equation 3 with i(AC) = π/2 -(β+ψ). 
Accordingly, the internal energy dissipation along slip plane 
AC is obtained from Equation 1 as  
 

[ ] fuvAC VCkkBW )(2cos)1()1(
sincos8)( ψη
ηη

δ +−−+=
          (16) 

 
 Instead of using the angles η and ζ shown in Figure 
3a and Figure 3b, it was found more convenient to define 
the lengths of discontinuities and the velocity  increments in 
terms of the footing width, B, the mechanism depth, d, and 
the lateral extent of the mechanism from the edge of the 
footing, h. Therefore, in terms of parameters d and h 
Equation 16 becomes  
 

[ ] fuvAC VCkk
d
BdW )(2cos)1()1(

32
16 22

)( ψηδ +−−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

           (17) 
 
 The length, velocity increment, and shear strength 
along the slip plane BC are identical to the corresponding 
values along discontinuity AC, and hence the rate of energy 
dissipation along plane BC is also given by Equation 17. 
From the geometry of Figure 3a, the length of the slip plane  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
is L(BD)= h/(2 cos ζ), the inclination angle i(BD) is equal to 
π/2-(α-ψ), and referring to Figure 3b the velocity increment 

is 
ζη costan)(

f
BD

V
V = . 

 
Accordingly, from Equations 1 and 3 one gets 
 

fuvBD VCkk
dh
hdBW )](2cos)1()1[(

16
4 22

)( ψζδ −−−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

             (18) 
 
 Because the length, velocity increment, and shear 
strength along the slip plane DE are identical to those along 
discontinuity BD, the rate of energy dissipation along DE is 
also given by Equations 18. From the geometry of Figure 
3a, the length of the slip plane L(CD) is equal to (b+2h)/4, 
from Figure 3b the velocity increment V(CD) = 2 Vf /tan η; 
and the undrained shear strength Cui(CD) is obtained from 
Equation 3 with the inclination angle i(CD) = π/2-ψ, and 
hence from Equation 1 the internal energy dissipation along 
discontinuity CD is after simplification given as 
 

[ ] fuvCD VCkk
d
hBBW )2cos)1()1(

16
2

)( ψδ −−+⎟
⎠

⎞
⎜
⎝

⎛ +
=

                 (19) 
 
 Summing rates of energy dissipation along 
discontinuities AC, BC, CD, BD, and DE, and multiplying 
by two for both sides of the mechanism, gives the total 
rates of internal energy dissipation. Equating the total rate of 
internal energy dissipation thus obtained to the total rate at 
which the work is done by the force on the foundation 
(Equation 10), after some algebraic manipulations the limit 
load is given by 
 

uv
u C

BdBhhBhdk
BdBhhBhdk

dh
P

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−−−+

++++
=

ψ2cos)428)(1(                            
)428)(1(

4
1

2222

2222

 20) 

 

Figure 3. (a) Translational failure mechanism; (b) Velocity hodograph 
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The best upper bound in Equation 20 is found by 
minimizing Pu with respect to the variables d and h, or 
 

0 =
d
Pu

∂
∂

                                                                      (21a) 
 
and 
 

    0=
h
Pu

∂
∂

                                                                   (21b) 
 
From Equations 20, 21a and 21b, we get 
 

⎥
⎦

⎤
⎢
⎣

⎡

−−+

−++
=

ψ
ψ
2cos)1()1(
2cos)1)1(22

1

kk
kkB

d

                                    (22) 
 
and 
 

2
1

=
B
h

                                                                            (23) 
 
 It is noted from Equation 23 that the length h is 
function only of the footing width and hence the lateral 
extent of the failure mechanism is independent of the 
degree of soil anisotropy. Setting k =1, from Equation 22, 

d/B = ( )22/1  which is exactly the value obtained by Chen 
(1975) for the case of soils with isotropic shear strength. 
Substituting Equations 22 and 23 into Equation 20, the least 
upper bound obtained for the translational mechanism of 
Figure 3a is given by 
 

uv
a
cT

u CNq =                                                                  (24) 

where a
cTN  is the bearing capacity factor for strip footing 

on anisotropic cohesive soils obtained based on the 
translational mechanism depicted in Figure 3a, and is 
expressed as  
 

( ) ( )[ ]2
1

222 2cos1122 ψkkN a
cT −−+=                                 (25) 

 
 
 Equation 25 has the advantage that it yields directly, 
and without recourse to supplementary graphs, an 
expression for the bearing capacity factor for a strip footing 
on the surface of anisotropic cohesive soil. Setting k = 1 

gives 
a
cTN = 4√2, which is exactly the value obtained by 

Chen (1975) for the case of soils with isotropic undrained 
shear strength.  
 

3. Results and discussion 
 
 The values for the bearing capacity factors a

cMN  

(Equation 15) and a
cTN  (Equation 25), for degree of 

anisotropy ranging from 0.5 to 2.0, are tabulated in 
columns 2 and 5 of Table 1, respectively. Although for 
practical purposes the value for the bearing capacity factor 
need to be estimated with only one digit past the decimal 

point, for reasons of comparison all results in Table 1 are 
truncated to three digits.  
 Inspection of the data in Table 1 shows that soil 
anisotropy has a profound effect on the value of bearing 
capacity factor. For the case of modified Hill-type 
mechanism, the change in the value of a

cMN was about 34% 

when k changed from 1.0 to 0.50. Changing the value of k 
from 1.0 to 2.0 the increase in the value for a

cMN  was 

about 50%. Almost the same proportionality of change 
holds true for the a

cTN values for the case of the translational 

mechanism (column 5 of Table 1). It is evident therefore 
that neglecting anisotropy and assuming that the strength in 
all directions is equal to the vertical strength is considerably 
on the unsafe side for k less than one and conservative for k 
values greater than one. The degree of vulnerability and 
conservatism increases as k becomes far less and far more 
than unity, respectively.  
 Figure 4 shows the relationship between soil degree 
of anisotropy and the bearing capacity factors a

cMN  and 
a
cTN . It is noted that, irrespective of the degree of soil 

anisotropy, a
cMN values are consistently lower than those of  

a
cTN . As shown in Figure 5, the discrepancy between the 

two solutions increased as the degree of anisotropy 
increased and it reached its maximum value of about 10% 
when k factor approached unity, which represents the case 
when the shear strength is isotropic, and then started to 
decrease again. However, considering the uncertainties 
associated with measured soil properties, the deviation 

between the values of a
cMN and a

cTN  is well within 

acceptable limits for practical applications. 
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Degree of Anisotropy, 
k 
 

 
 

 

 

 Angle β from Eq. 13b Angle β from Eq. 26 

0.5 3.842 3.842 3.856 4.209 

0.6 4.105 4.105 4.113 4.506 

0.8 4.626 4.626 4.627 5.087 

1.0 5.142 5.142 5.142 5.657 

1.2 5.655 5.656 5.656 6.219 

1.4 6.166 6.166 6.170 6.775 

1.6 6.675 6.675 6.684 7.326 

1.8 7.184 7.184 7.198 7.874 

2.0 7.693 7.693 7.712 8.419 

 

Table 1. Values for the bearing capacity factor from different failure mechanisms 

 

Figure 4. Comparison of anisotropic bearing capacity factors from translational and modified Hill-type failure mechanisms 
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 The relationship between the degree of anisotropy k 
and each of the angle β found from Equation 13b and the 
depth d obtained from Equation 22 is shown in Figure 6 
and Figure 7, respectively. It can be seen that the larger is 
the degree of soil anisotropy the larger is the angle β and 
depth d, and hence the lower boundary of the failure 
mechanisms extend deeper in the ground. This is 
schematically demonstrated in Figure 8 and Figure 9 for the 
modified Hill-type mechanism and translational 
mechanism, respectively. However, the change in 
downward intrusion when k value increased was larger for 
the translational mechanism than for the modified Hill-type 
mechanism. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 It is also noticed from Figure 6 that for k ranging 
from 0.5 to 2 the angle β lies in a narrow range of about 
41° – 48.2°. The corresponding values for the term sin 2β 
increased only from 0.990 to 0.994, a change of about 
0.4%. Thus the term sin 2β  in Equation 13b can virtually 
be set equal to one, and hence the angle β is explicitly 
expressed as  
 

⎥
⎦

⎤
⎢
⎣

⎡ +
≅ −

ψ
ψ

β
k)cos2-(1

)cos2 k)-(1-k)(1tan
2
1 1

                                (26) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. Discrepancy between the bearing capacity factors and as a function of degree of anisotropy 

Figure 6. Relationship between the optimized angle β defining the modified Hill-type failure mechanism and degree of anisotropy 
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Figure 7. Relationship between optimized depth of the translational failure mechanism and degree of anisotropy 

 

Figure 8. Variation of downward intrusion of modified Hill-type mechanism with degree of anisotropy 
 

 

Figure 9. Variation of downward intrusion of translational mechanism with degree of anisotropy 
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 The values for a
cMN as obtained from Equation 15 

with the angle β given by Equation 26 are listed in column 
3 of Table 1. It is noted that for all considered values of 

degree of anisotropy, the values for a
cMN in columns 2 and 

3 are identical to an accuracy of three digits passing the 
decimal point. It is therefore justifiable to set the term sin 2β 
in Equation 13b to be equal to one, and the angle β is 
explicitly determined from Equation 26 with no need to 
recourse to the trial-and-error procedure required for the 
case of Equation 13b.  
 Test results reported by Lo (1965) indicated that the 
angle ψ is almost constant irrespective of the direction in 
which the sample has been taken, and hence independent 
of the angle of rotation of the major principal stress. 
Furthermore, results of undrained tests presented by Lo 
(1965) and Law and Lo (1976) indicated that angle ψ lies 
between 30° and 40° with a probable mean of about 34°.  

The bearing capacity factor 
a
cMN  

was evaluated for angle 

ψ ranging from 30° to 40° and for a set of values for k that 
ranged between 0.5 and 2.0, and Figure 10 shows the 

relationship between 
a
cMN  and angle ψ  for k = 0.5. It is 

seen that the value of angle ψ has negligible effect on the 
value of the bearing capacity factor. For all the considered 

values of k, the angle ψ had an effect on 
a
cMN  of no more 

than 0.6%. Furthermore, the effect was shown to get 
smaller as the value of k approaches unity. For instance, for 

k = 1.2 the change in 
a
cMN  

with the angle ψ changing 

from 30° to 40° was merely about 0.03%.  
 Thus, the angle ψ can practically be given a fixed 
value of 34°, which is actually the value suggested by Lo 
(1965), and Equations. 15 and 26, respectively become 
 

( ) ββββ 2coscot)1(
8
32cot)1( kkN a

cM −−++≅
                  (27) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and 
 

⎥
⎦

⎤
⎢
⎣
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−

+
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2
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                                                      (28) 
 
 Setting the angles α and β  in Figures 1a to be equal 
to π/4, the failure mechanism becomes the conventional 
Hill-type mechanism, and the bearing capacity factor 
expressed in Equation 15 becomes 
 

2
)2)(1( π++

=
kN a

cH
                                                      (29) 

 
where NCH

a is the anisotropic bearing capacity factor 

obtained based on the conventional Hill-type failure 
mechanism. For isotropic strength, Cuh = Cuv = Cu, hence k = 
1 and Equation 29 reduces to Nc = (2+π), which is the 
known Prandtl-Reissner value for the bearing capacity 
factor of footings on isotropic cohesive soils.  
 
Setting k =1, Equation 11 reduces to 
 

[ ] u
u CBP )(2cotcot βααβ +++=                                (30) 

 
Minimizing Equation 30 with respect to β yields 
 

0cossin 22 =− ββ                                                          (31) 
 
 From Equation 31, β = π/4, and similarly minimizing 
Equation 30 with respect to α, the angle α can also be 
found equal to π/4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Relationship between the bearing capacity factor  and angle ψ (k = 0.5) 
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 Therefore, it is shown herein that the least bearing 
capacity of footings on isotropic soils obtained from the 
modified Hill-type mechanism (Figure 1a) is when the 
angles α and β in Figure 1a are both equal to π/4 (i.e. the 
conventional Hill-type mechanism). Certainly, a good 
upper bound to the true limit load is known to be obtained 
by considering a collapse mechanism where the geometric 
parameters are variable. As the process of optimization of 
the geometry of the failure mechanism is eliminated, the 
overestimation of the true limit load is expected. However, 
the results of Table 1 shows that the discrepancy between 

the values of
a
cMN and 

a
cHN is minimal if not negligible, 

especially for lower values of k. Indeed, comparison of the 
data in columns 2 and 4 of Table 1 shows that whether the 
angle β is varied in an optimization scheme or set a priori at 
a fixed value of π/4, the discrepancy in the value of the 
bearing capacity factor does not exceed about 0.4%. Thus 
the improvement in Pu does not warrant the finding of angle 
β from Equation 26. Instead it can be set equal to π/4, 
based not only on the premise that this value for β gives the 
least upper bound for the case of isotropic strength but also 
after considering the rather infinitesimal discrepancy 
between the bearing capacity factor values shown in 
columns 2 and 4 of Table 1.  
 
3.1 Comparative Study  
 Irrespective of the degree of soil anisotropy, 
Equation 29 provides upper-bound values that are less than 
the corresponding values obtained from the translational 
mechanism (i.e. Equation 25) and only slightly higher than 
the values provided by the exact solution (i.e. Equation 15), 
and hence this formula is exclusively used in subsequent 
discussions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 A comparison of the bearing capacity factor 
a
cHN  

with perhaps the most widely known solutions for bearing 
capacity on anisotropic clays is given in Table 2. Because 
the solution of Reddy and Rao (1981) is only available in a 
graphical form, the same values for degree of anisotropy 
considered by them were considered for the generation of 
the bearing capacity factor values shown in Table 2. The 
degree of anisotropy is defined as the ratio of vertical to 
horizontal principal shear strength and as such it is the 
reciprocal of the definition adopted in this paper. Thus, the 
values for k shown in Table 2 are the reciprocal of those 
values considered by Reddy and Srinivasan (1967) and 
Reddy and Rao (1981). 
 The solution provided by Reddy and Srinivasan 
(1967) was obtained from the limit equilibrium method 
assuming a rotational failure mechanism. It can be seen 
from Table 2 that, irrespective of degree of soil anisotropy, 
the solution by Reddy and Srinivasan (1967) yielded higher 
values for the bearing capacity factor as compared to the 
results of the presented analysis. The difference between 
the two solutions ranges from about 3% to 9%, for k = 0.5 
and k = 1.25, respectively. This is to be expected in view of 
the fact that the rotational mechanism is commonly known 
not to render the least upper bound for the bearing 
capacity problem. Therefore, the discrepancy between the 
presented solution and that of Reddy and Srinivasan (1967) 
is attributed not to the method of analysis but rather to the 
different postulated failure mechanisms. In fact, as stated at 
the outset of this paper, Chen (1975) solved the same 
problem using the kinematical approach of limit analysis 
and the results agreed with the Reddy and Srinivasan 
(1967) limit equilibrium method solution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reference 
 

Method of 
Analysis 

Degree of Anisotropy, k 

0.500 0.556 0.625 0.714 0.833 1.000 1.250 

Present 
Analysis (Eq. 

29) 

Limit 
Analysis 

3.856 3.999 4.178 4.407 4.713 5.142 5.784 

Reddy and 
Srinivasan 

(1967) 

Limit 
Equilibrium 

3.964 4.139 4.357 4.636 5.005 5.520 6.288 

Reddy and 
Rao (1981) 

Limit 
Analysis 

3.179 3.445 3.718 4.035 4.509 5.142 6.071 

Davis and 
Christian 
(1971) 

Slip-line 3.913 4.053 4.211 4.430 4.718 5.142 5.796 

 

Table 2. Comparison of bearing capacity factor values from different method of analysis 
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 Reddy and Rao (1981) used the kinematic 
approach of limit analysis and adopted Prandtl-type failure 
mechanism. It is seen from Table 2 that for degree of 
anisotropy less than one, the presented solution over-
predicted the Reddy and Rao (1981) solution, with the 
deviation being 21% for k = 0.5 and it consistently 
decreases to reach about 4.5% for k = 0.833. However, as 
k value becomes greater than one, it is seen that the 
presented analysis yielded a lower value for the bearing 
capacity factor. Although no results were available for k 
value greater than 1.25, the over-prediction of Reddy and 
Rao (1981) solution is expected to consistently increase 
with increasing k value. In addition, although the Reddy 
and Rao (1981) solution provided lower values for the 
bearing capacity factor in the cases when k is less than one, 
still however the small improvement is out-weighed by the 
complexity of the optimization procedure needed to get the 
least upper bound compared to the simple expression for 

a
cHN  provided by Equation 29. 

 Using the slip-line method, Davis and Christian 
(1971) presented a solution for undrained bearing capacity 
on anisotropic clays. The anisotropic strength is assumed to 
vary in the form of an ellipse, where as shown in Figure 11, 
the shear strength measured at an angle i from the vertical 
is plotted along a radial line from the origin oriented 2i from 
the horizontal axis. Solution of the characteristic equations 
gave (Davis and Christian 1971): 
 

⎟
⎠

⎞
⎜
⎝

⎛ +
=

2
1/ kNN c

a
cD

                                                          (32) 
 

where 
a
cDN  is Davis and Christian (1971) anisotropic 

bearing capacity factor,
 

/
cN  is a factor that is a function of 

elliptic integrals of the second kind, and its value was 
provided in a graphical form as a function of the ratio b/a. 
Based on the geometry of ellipses, the value of b/a is equal 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

to Cu45/ uvuhCC , where Cu45 is the value of shear strength 

at an angle of 45º to the vertical. For the special case when 

b = a, 
/
cN  in Equation 32 reduces to the conventional 2+π, 

and hence the 
a
cDN factor becomes exactly identical to 

a
cHN factor expressed in Equation 29. 

 Evidently, unlike all other solutions in which the 
bearing capacity for anisotropic soils is defined in terms of 
the vertical and horizontal shear strengths, in Davis and 
Christian (1971) solution however a third value is required 
in the 45° direction. Experimental data reported in Davis 
and Christian (1971) indicated that for seven out of ten test 
data reported by several authors, the discrepancy between 
the experimentally measured values of Cu45 and those 
predicted from Equation 3 ranged between 2 to about 
10%. Therefore, the use of Equation 3 for the evaluation of 
Cu45

 is considered justifiable. Furthermore, the results 
presented by Davis and Christian (1971) showed that the 
predicted bearing capacity value is not sensitive to the 
value of Cu45 as it is to the differences between Cuh and Cuv. 
 It is assumed in this paper, as well as by several 
other researchers, that Equation 3 provides a valid 
representation of shear strength in any direction. From 
Equation 3, Cu45 is equal to (1+k)Cuv/2, and accordingly 

the ratio b/a is equal to (1+k)/(2 k ). Based on this ratio 

the values for the factor 
/
cN in Equation 32 were 

determined from the k-
/
cN  graph provided by Davis and 

Christian (1971). The obtained value for 
/
cN  were then 

entered into Equation 32 to give the 
a
cDN  values listed in 

the fourth row of Table 2. It is noted that the values of 
a
cHN  and 

a
cDN  

are in a good agreement. The discrepancy 

increased as the value of k deviates from unity; however 
the two solutions differ by no more than 1.5% for the range 
of values considered for the k ratio. 

Figure 11. Elliptical variation of undrained shear strength (After Davis and Christian, 1971) 
 

 



Revista Ingeniería de Construcción RIC 
Vol 30 Nº2 2015 www.ricuc.cl 

ENGLISH VERSION…………...................................................................................................................................................................................................................................... 

 
Revista Ingeniería de Construcción     Vol 30 Nº2     Agosto de 2015     www.ricuc.cl 122 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 As far as the locus of strength is assumed to be 
represented by Equation 3, the change in the b/a ratio with 
k is, as shown in Figure 12, considered small. The 
corresponding change in the value of /

cN with respect to 

the ratio b/a, and hence k, was found to be further 
minimal. For instance, for a value of 1 and 2 for the ratio k 
the corresponding values for the factor /

cN  are 5.14 and 

4.95, respectively. Thus a change of 100% in the value of k 
resulted merely in about 3.7% change in the value of /

cN . 

Therefore, the factor /
cN  can approximately be assumed to 

be independent of k and thus given a fixed value of 2+π. 
Consequently the bearing capacity factor a

cDN  obtained 

from a slip-line method solution and expressed in Equation 
32 becomes exactly identical to the factor a

cHN provided in 

Equation 29 which was derived based on the upper bound 
approach.  
 Actually, Davis and Christian (1971) suggested that 
in the absence of Cu45 value the factor /

cN  in Equation 32 is 

to be replaced by χ(2+π), where χ is a correction factor. 
The experimental data compiled by Davis and Christian 
(1971) indicated that the value of χ ranges between 0.89 to 
1.03, the average value being 0.97. They suggested the use 
of χ = 0.9, and accordingly for a given degree of anisotropy 
the value of a

cDN  
is 10% less than the corresponding value 

of a
cHN . This is justifiable if we remember that a

cHN is in fact 

an upper bound solution. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 It is therefore interesting to notice that the upper 
bound solution derived in this paper for the case of the 
conventional Hill-type failure mechanism and the slip-line 
method solution presented by Davis and Christians (1971) 
yield identical expressions for the anisotropic bearing 
capacity factor, provided that in the Davis and Christian 
(1971) solution, either the angular variation of shear 
strength is defined as in Figure 11 but the b/a ratio is set 
equal to 1, or alternatively the Casagrande and Carillo 
(1944) relationship (i.e. Equation 3) is considered valid and 
the dependency of the ratio b/a on the value of k is 
assumed negligible. Whether the ratio b/a is set equal to 
one or evaluated as (1+k)/(2 k ), the loci of strength 
distribution for the two cases are reasonably comparable as 
shown in Figure 11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. b/a ratio versus degree of anisotropy with the strength distribution represented by Casagrande and Carillo formula 
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4. Summary and conclusions 
 
 Employing the kinematical approach of limit analysis 
method, this paper presents closed-form solutions for the 
undrained bearing capacity of shallow strip footings on 
anisotropic clays. The solutions were obtained using 
modified Hill-type and translational failure mechanisms 
with variable wedge angles. The derived expressions make 
it possible to analytically and straightforwardly calculate the 
bearing capacity of anisotropic clays, in comparison with 
other available solutions in which results are mostly 
presented in the form of graphs and tables for discrete 
values of soil and failure mechanism parameters. The 
influence of degree of soil anisotropy on the value for the 
bearing capacity factor was investigated for the attempted 
mechanisms as well as through comparison with pertinent 
results of other investigations.  
 Although the use of the modified Hill-type 
mechanism has provided an analytical expression for the 
bearing capacity factor a

cMN  (Equation 15), however the 

angle β defining the mechanism need to be found from a 
trial-and-error procedure (Equation 13b). It was found, 
however, that for a wide range of degree of anisotropy the 
corresponding range for the possible values for angle β is 
very narrow. Thus, the angle β can conveniently be 
determined from the approximate analytical expression 
given into Equation 26 without recourse to the trial-and-
error procedure required by the exact solution expressed in 
Equation 13b.  
 The results of the parametric study has also shown 
that for a given degree of soil anisotropy, whether the angle 
β is varied in an optimization scheme or  given a fixed value 
of π/4, the corresponding values for the bearing capacity 
factor are very comparable. Thus the improvement in the 
predicted upper bound for a

cMN  does not warrant the use of 

the modified Hill-type mechanism with variable wedge 
angle. Instead, the conventional Hill-type failure 
mechanism with β = π/4 can reasonably provide not only 
analytical solution (i.e. Equation 29) but also an expression 
for the bearing capacity factor,

 
a
cHN  that is explicit, 

concise, and simple for use in practical applications. In 
addition, although the deviation between the upper bound 
values obtained from the two mechanisms is considered 
well within acceptable limits for practical applications, still 
the conventional Hill-type mechanism with no optimization 
of geometric parameters provides a

cHN  values that are less 

than the optimized a
cTN  values associated with the 

translational failure mechanism. 
 It was interesting to find out that the a

cHN is exactly 

equal to the conventional Prandtl-Reissner bearing capacity 
factor for the case of isotropic soil (i.e. 2+π) multiplied by 
the average of the sum of degree of anisotropy plus unity. 
In other word, the bearing capacity of footings on 
anisotropic clays is simply obtained from conventional 
analysis with the isotropic shear strength value being 
replaced by the average value of the shear strength in the 
vertical and horizontal directions.  
 Assuming that the variation of shear strength with 
direction is justifiably represented by the Casagrande and 
Carillo formula (Equation 3), the upper bound values for 
the bearing capacity factor obtained from the modified Hill-

type mechanism (Equation 15) were found practically 
identical to the values obtained from the Davis and 
Christian’s slip-line method solution (Equation 32). The 
discrepancy between the two solutions increased as the 
degree of anisotropy deviates from unity, however the two 
solutions differed by no more than 1.5% for values of 
degree of anisotropy, k, ranging between 0.5 and 2.0. It 
was further found that the upper bound solution arrived at 
in this paper, for the case of the conventional Hill-type 
failure mechanism (Equation 29), and the slip-line method 
solution presented by Davis and Christian yield identical 
bearing capacity factors provided that in the slip-line 
method solution the elliptical distribution of shear strength 
shown in Figure 11 is approximated by a circular 
distribution (i.e. b = a), or alternatively taken to be 
represented by the Casagrande and Carillo distribution but 
the dependency of the ratio b/a on the value of degree of 
anisotropy is assumed negligible.  
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5. Nomenclature 
 
B: Width of foundation 
Cuh: Undrained shear strength corresponding to 
horizontal direction at surface 
Cui: Undrained shear strength at inclination i of major 
principal stress with vertical  
Cun: Undrained shear strength along failure plane n  
Cuv: Undrained shear strength corresponding to vertical 
direction at surface 
Cu45: Undrained shear strength at an angle of 45o to the 
vertical  
d: Downward extension of failure mechanism  
h: Lateral extension of failure mechanism 
I

: 
Inclination of the major principal stress with vertical 

direction 
K: Coefficient of anisotropy 
ln: Length

 
of failure plane n 

n: Integer  
a
cDN : Davis and Christian anisotropic bearing capacity 

factor  
a
cHN : Anisotropic bearing capacity factor associated with 

the conventional Hill-type failure mechanism  
a
cMN : Anisotropic bearing capacity factor associated with 

the modified Hill-type failure mechanism  
 
 

 
 
 
 

a
cTN : Anisotropic bearing capacity factor associated with 

the translational failure mechanism  
/
cN : A factor in Davis and Christian anisotropic bearing 

capacity factor 
qu: Ultimate bearing capacity 
Pu: Ultimate load 
R: Radius of slip fan in the modified Hill-type failure 
mechanism 
Vf: Displacement of foundation 
Vn: Displacement along failure plane n 
α, β: Geometric parameters for the modified Hill-type 
failure mechanism 
ζ, η

:
: Geometric parameters for the translational failure 

mechanism 
δE: Rate of external work  
δW: Rate of internal energy dissipation 
δWn: Rate of internal energy dissipation along failure 
plane n 
θ: Geometric parameter 
ψ: Angle between major principal stress and failure 
plane 
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