Reuse of banana fiber and peanut shells for the design of new prefabricated products for buildings


  • Eddie Echeverría-Maggi Faculty of Engineering, Industry and Construction, Universidad Laica Vicente Rocafuerte, Guayaquil (Ecuador)
  • Vicente Flores-Alés Department of Architectural Constructions II, Universidad de Sevilla, Seville (Spain)
  • Juan Jesús Martín-del-Río Department of Architectural Constructions II, Universidad de Sevilla, Seville (Spain)



polymer; fibers; crop waste treatment; insulating panel


This work presents a sustainable panel elaboration for housing interiors through banana fiber and peanut shells gathered from crop residues, consolidated with a polyester resin binder. A material characterization process was defined by forming three prototypes with different dosages. The prototypes performed physical and mechanical tests following recommendations from previous research and the standards. The results obtained were favorable regarding thermal transmittance percentages, achieving an average resistance comparable to non-structural medium density particleboard (MDP). Performance comparisons were also established, which depict the potential of these prototypes to contribute to the building industry, including the development of thermally comfortable environments.


Download data is not yet available.

Author Biography

Vicente Flores-Alés, Department of Architectural Constructions II, Universidad de Sevilla, Seville (Spain)

Dpto. Construcciones Arquitectónicas II

Catedrático EU


Amir, N., Abidin, K. A. Z., & Shiri, F. B. M. (2017). Effects of Fibre Configuration on Mechanical Properties of Banana Fibre/PP/MAPP Natural Fibre Reinforced Polymer Composite. Procedia Engineering, 184, 573–580.

ASTM D1037-12 - Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. (n.d.). Retrieved March 23, 2022, from

Belhadj, B., Bederina, M., Dheilly, R. M., Mboumba-Mamboundou, L. B., & Quéneudec, M. (2020). Evaluation of the thermal performance parameters of an outside wall made from lignocellulosic sand concrete and barley straws in hot and dry climatic zones. Energy and Buildings, 225, 110348.

Binici, H., & Aksogan, O. (2017). Insulation material production from onion skin and peanut shell fibres, fly ash, pumice, perlite, barite, cement and gypsum. Materials Today Communications, 10, 14–24.

Chinnu, S. N., Minnu, S. N., Bahurudeen, A., & Senthilkumar, R. (2021). Recycling of industrial and agricultural wastes as alternative coarse aggregates: A step towards cleaner production of concrete. Construction and Building Materials, 287, 123056.

Comisión para la Cooperación Ambiental, Montreal, C. (2014). La quema de residuos agricolas:fuentes de dioxinas.

Dönmez Çavdar, A., Yel, H., Kalaycioǧlu, H., & Hiziroglu, S. (2013). Effect of waste melamine impregnated paper on properties of oriented strand board. Materials & Design, 51, 751–755.

FAO. (2000). Análisis del mercado del banano. 2000.

FAO. (2002). Perspectivas para el medio ambiente Agricultura y medio ambiente.

Gairola, S. P., Tyagi, Y. K., Gangil, B., & Sharma, A. (2021). Fabrication and mechanical property evaluation of non-woven banana fibre epoxy-based polymer composite. Materials Today: Proceedings, 44, 3990–3996.

Gatani, M., Argüello, R., & Sesín, S. (2010). Effect of chemical treatments on the mechanical properties of peanut shell and cement blends. Materiales de Construcción, 60(298), 137–147.

Ge, S., Wu, Y., Peng, W., Xia, C., Mei, C., Cai, L., Shi, S. Q., Sonne, C., Lam, S. S., & Tsang, Y. F. (2020). High-pressure CO2 hydrothermal pretreatment of peanut shells for enzymatic hydrolysis conversion into glucose. Chemical Engineering Journal, 385, 123949.

Guna, V., Ilangovan, M., Rather, M. H., Giridharan, B. V., Prajwal, B., Vamshi Krishna, K., Venkatesh, K., & Reddy, N. (2020). Groundnut shell / rice husk agro-waste reinforced polypropylene hybrid biocomposites. Journal of Building Engineering, 27, 100991.

Hernández, R., & Mendoza, C. P. (2018). Metodología de la investigación: las tres rutas cuantitativa, cualitativa y mixta. Mc Graw Hill, 1(Mexico), 714.

ISO - ISO 8302:1991 - Thermal insulation — Determination of steady-state thermal resistance and related properties — Guarded hot plate apparatus. (n.d.). Retrieved March 23, 2022, from

Jami, T., Karade, S. R., & Singh, L. P. (2019). A review of the properties of hemp concrete for green building applications. Journal of Cleaner Production, 239, 117852.

Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285.

Laxshaman Rao, B., Makode, Y., Tiwari, A., Dubey, O., Sharma, S., & Mishra, V. (2021). Review on properties of banana fiber reinforced polymer composites. Materials Today: Proceedings, 47, 2825–2829.

Maraveas, C. (2020). Production of Sustainable Construction Materials Using Agro-Wastes. Materials 2020, Vol. 13, Page 262, 13(2), 262.

Merino, M. del R., Rodríguez, J. G., Martínez, F. F., & Astorqui, J. S. C. (2017). Viability of using olive stones as lightweight aggregate in construction mortars. Revista de La Construcción. Journal of Construction, 16(3), 431–438.

Nautiyal P.C., M. D. (2002). Groundnut post-harvest operations.

Nensok, M. H., Azree, M., Mydin, O., & Awang, H. (2021). Optimization of mechanical properties of cellular lightweight concrete with alkali treated banana fiber. Revista de La Construcción. Journal of Construction, 20(3), 491–511.

OECD. (2008). Environmental Performance of Agriculture at a Glance. OECD.

ONU. (2020). La Agenda para el Desarrollo Sostenible.

ONU. (2021). Documentación de la ONU : Medio ambiente.

Pinto, J., Vieira, B., Pereira, H., Jacinto, C., Vilela, P., Paiva, A., Pereira, S., Cunha, V. M. C. F., & Varum, H. (2012). Corn cob lightweight concrete for non-structural applications. Construction and Building Materials, 34, 346–351.

Ramesh, M., Sri Ananda Atreya, T., Aswin, U. S., Eashwar, H., & Deepa, C. (2014). Processing and Mechanical Property Evaluation of Banana Fiber Reinforced Polymer Composites. Procedia Engineering, 97, 563–572.

Rojas, C., Cea, M., Iriarte, A., Valdés, G., Navia, R., & Cárdenas-R, J. P. (2019). Thermal insulation materials based on agricultural residual wheat straw and corn husk biomass, for application in sustainable buildings. Sustainable Materials and Technologies, 20, e00102.

Shafigh, P., Mahmud, H. Bin, Jumaat, M. Z., & Zargar, M. (2014). Agricultural wastes as aggregate in concrete mixtures – A review. Construction and Building Materials, 53, 110–117.

Thongtha, A., Maneewan, S., Punlek, C., & Ungkoon, Y. (2014). Investigation of the compressive strength, time lags and decrement factors of AAC-lightweight concrete containing sugar sediment waste. Energy and Buildings, 84, 516–525.

UNE EN 310:1994 Wood-based panels - Determination of modulus of elasticity in bending and of bending strength - European Standards. (n.d.). Retrieved March 23, 2022, from

UNE EN 312:2010 Particleboards - Specifications - European Standards. (n.d.). Retrieved March 23, 2022, from

UNE EN 317:1994 Particleboards and fibreboards - Determination of swelling in thickness after immersion in water - European Standards. (n.d.). Retrieved March 23, 2022, from

UNE EN 323:1994 Wood-based panels - Determination of density - European Standards. (n.d.). Retrieved March 23, 2022, from

USDA. (2019). Peanut Explorer.

World Population Clock: 7.9 Billion People (2022) - Worldometer. (n.d.). Retrieved March 23, 2022, from



2022-08-31 — Updated on 2022-08-31


How to Cite

Echeverría-Maggi, E., Flores-Alés, V., & Martín-del-Río, J. J. (2022). Reuse of banana fiber and peanut shells for the design of new prefabricated products for buildings. Revista De La Construcción. Journal of Construction, 21(2), 461–472.